[1]
Popovich, A. A., V. Sh. Sufiiarov, I. A. Polozov, E. V. Borisov,D. V. Masaylo, P. N. Vopilovskiy, A. A. Sharonov, R. M. Tikhilov, A. V. Tsybin, A. N. Kovalenko, S. S. Bilyk. Use of additive techniques for preparing individual components of titanium alloy joint endoprostheses., Biomedical Engineering 50.3 (2016): 202-205.
DOI: 10.1007/s10527-016-9619-x
Google Scholar
[2]
Popovich, A., Sufiiarov, V., Polozov, I., Borisov, E., Masaylo, D. Additive manufacturing of individual implants from titanium alloy METAL 2016 - 25th Anniversary International Conference on Metallurgy and Materials, Conference Proceedings, 2016, Pages 1504-1508.
DOI: 10.18063/ijb.2016.02.004
Google Scholar
[3]
Zhongji Sun, Xipeng Tan, Shu Beng Tor, Yee Yeong Wai. Selective laser melting of stainless steel 316L with low porosity and high build rates., Materials & Design104 (2016): 197-204.
DOI: 10.1016/j.matdes.2016.05.035
Google Scholar
[4]
Popovich, A. et al. Study of microstructure and properties of 316L steel after selective laser melting, METAL 2016 - 25th Anniversary International Conference on Metallurgy and Materials, Conference Proceedings (2016) 659-663.
Google Scholar
[5]
Sing Ying Choy, Chen-Nan Sun, Kah Fai Leong, Jun We. Compressive properties of functionally graded lattice structures manufactured by selective laser melting., Materials & Design 131 (2017): 112-120.
DOI: 10.1016/j.matdes.2017.06.006
Google Scholar
[6]
Van Bael, S., Chai, Y. C., Truscello, S., Moesen, M., Kerckhofs, G., Van Oosterwyck, H., Schrooten, J. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta biomaterialia 8.7 (2012): 2824-2834.
DOI: 10.1016/j.actbio.2012.04.001
Google Scholar
[7]
Popovich, A., Sufiiarov, V., Polozov, I., Borisov, E., Masaylo, D.Producing hip implants of titanium alloys by additive manufacturing, International Journal of Bioprinting (2016), 2(2), pp.78-84.
DOI: 10.18063/ijb.2016.02.004
Google Scholar
[8]
Anatoliy Popovich and Vadim Sufiiarov (2016). Metal Powder Additive Manufacturing,, New Trends in 3D Printing, Chapter 10, InTech,.
DOI: 10.5772/63337
Google Scholar
[9]
McCalden, Richard W., and Joseph A. McGeough. Age-related changes in the compressive strength of cancellous bone: The relative importance of changes in density and trabecular architecture., JBJS 79.3 (1997): 421-427.
DOI: 10.2106/00004623-199703000-00016
Google Scholar
[10]
Sing, Swee Leong, Florencia Edith Wiria, and Wai Yee Yeong. Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior., Robotics and Computer-Integrated Manufacturing 49 (2018): 170-180.
DOI: 10.1016/j.rcim.2017.06.006
Google Scholar
[11]
V.M. Golod, V.S. Sufiiarov. The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization / // IOP Conference Series: Materials Science and Engineering. – 2017. – Vol. 192, Is. 1. – P. 012009.
DOI: 10.1088/1757-899x/192/1/012009
Google Scholar
[12]
Lütjering G, Williams J C and Gysler A. 2000, Microstructure and mechanical properties of titanium alloys, in Microstructure and Properties of Materials vol.2, Li J C M (ed.), World Scientific Publishing Co. Pte. Ltd., Singapore, 49–55.
DOI: 10.1142/9789812793959_0001
Google Scholar
[13]
Popovich, A., Sufiiarov, V., Polozov, I., Borisov, E., Masaylo, D., Orlov, A. Microstructure and Mechanical Properties of Ti-6AL-4V Manufactured by SLM., Key Engineering Materials (2015), 651-653, pp.677-682.
DOI: 10.4028/www.scientific.net/kem.651-653.677
Google Scholar
[14]
Vrancken, B., Thijs, L., Kruth, J. P., & Van Humbeeck, J. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties., Journal of Alloys and Compounds 541 (2012): 177-185.
DOI: 10.1016/j.jallcom.2012.07.022
Google Scholar