[1]
Popovich, A., Sufiiarov, V., Polozov, I., Borisov, E., Masaylo, D. Additive manufacturing of individual implants from titanium alloy METAL 2016 - 25th Anniversary International Conference on Metallurgy and Materials, Conference Proceedings, 2016, Pages 1504-1508.
DOI: 10.18063/ijb.2016.02.004
Google Scholar
[2]
Popovich, A., Sufiiarov, V., Polozov, I., Borisov, E., Masaylo, D., & Orlov, A. Microstructure and Mechanical Properties of Ti-6AL-4V Manufactured by SLM., Key Engineering Materials (2015). Vol. 651-653. pp.677-682.
DOI: 10.4028/www.scientific.net/kem.651-653.677
Google Scholar
[3]
Popovich, Anatoly A., et al. Microstructure and mechanical properties of Inconel 718 produced by SLM and subsequent heat treatment., Key Engineering Materials (2015). Vol. 651-653. pp.665-670.
DOI: 10.4028/www.scientific.net/kem.651-653.665
Google Scholar
[4]
Popovich, A., Sufiiarov, V., Polozov, I., Borisov, E., Masaylo, D. Producing hip implants of titanium alloys by additive manufacturing(2016) International Journal of Bioprinting, Vol. 2, Issue 2, 2016, Pages 78-84.
DOI: 10.18063/ijb.2016.02.004
Google Scholar
[5]
Polozov, Igor, et al. Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing., Journal of Alloys and Compounds (2018), Vol. 763, pp.436-445.
DOI: 10.1016/j.jallcom.2018.05.325
Google Scholar
[6]
Anatoliy Popovich and Vadim Sufiiarov (2016). Metal Powder Additive Manufacturing,, New Trends in 3D Printing, Chapter 10, InTech,.
DOI: 10.5772/63337
Google Scholar
[7]
Frazier W. E. Metal additive manufacturing: a review //Journal of Materials Engineering and Performance. – 2014. – Т. 23. – №. 6. – С. 1917-1928.
Google Scholar
[8]
Popovich A. A. et al. Use of additive techniques for preparing individual components of titanium alloy joint endoprostheses //Biomedical Engineering. – 2016. – Т. 50. – №. 3. – С. 202-205.
DOI: 10.1007/s10527-016-9619-x
Google Scholar
[9]
Leuders S. et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance //International Journal of Fatigue. – 2013. – Т. 48. – С. 300-307.
DOI: 10.1016/j.ijfatigue.2012.11.011
Google Scholar
[10]
Huang L. J. et al. Low volume fraction in situ (Ti 5 Si 3+ Ti 2 C)/Ti hybrid composites with network microstructure fabricated by reaction hot pressing of Ti–SiC system //Composites Science and Technology. – 2013. – Т. 82. – С. 23-28.Vrancken, B., Thijs, L., Kruth, J. P., & Van Humbeeck, J. (2012).
DOI: 10.1016/j.compscitech.2013.03.025
Google Scholar
[11]
Gu D. et al. Selective laser melting of in-situ TiC/Ti 5 Si 3 composites with novel reinforcement architecture and elevated performance //Surface and Coatings Technology. – 2011. – Т. 205. – №. 10. – С. 3285-3292.
DOI: 10.1016/j.surfcoat.2010.11.051
Google Scholar
[12]
Chen W., Boehlert C. J. Texture induced anisotropy in extruded Ti–6Al–4V–xB alloys //Materials Characterization. – 2011. – Т. 62. – №. 3. – С. 333-339.
DOI: 10.1016/j.matchar.2011.01.008
Google Scholar
[13]
Liu Z. et al. Improving corrosion and wear performance of HVOF-sprayed Inconel 625 and WC-Inconel 625 coatings by high power diode laser treatments //Surface and Coatings Technology. – 2007. – Т. 201. – №. 16. – С. 7149-7158.
DOI: 10.1016/j.surfcoat.2007.01.032
Google Scholar
[14]
Popovich, A. A., et al. Anisotropy of mechanical properties of products manufactured using selective laser melting of powdered materials., Russian Journal of Non-Ferrous Metals (2017): Vol.58, Issue 4, pp.389-395.
DOI: 10.3103/s1067821217040149
Google Scholar
[15]
Sufiiarov, V. Sh, et al. Layer thickness influence on the Inconel 718 alloy microstructure and properties under selective laser melting., Tsvetnye Metally (2016), Vol.1, pp.81-86.
DOI: 10.17580/tsm.2016.01.14
Google Scholar