[1]
Sufiiarov V.S., Popovich A.A., Borisov E.V., Polozov I., Selective laser melting of titanium alloy and manufacturing of gas-turbine engine part blanks. Tsvetnye Metally. 2015;8:76-80.
DOI: 10.17580/tsm.2015.08.11
Google Scholar
[2]
Kokareva V.V., Smelov V.G., Agapovichev A.V., Sotov A.V., Sufiiarov, V.S., Development of SLM quality system for gas turbines engines parts production. IOP Conference Series: Materials Science and Engineering. 441(1),012024 (2018).
DOI: 10.1088/1757-899x/441/1/012024
Google Scholar
[3]
Vdovin R.A., Smelov, V.G. Sufiiarov, V.S. Borisov E.V., Designing of the digital casting process for the gas turbine engine blades with a single-crystal structure. IOP Conference Series: Materials Science and Engineering, Volume 441, conference 1 (2018).
DOI: 10.1088/1757-899x/441/1/012058
Google Scholar
[4]
Pan, D., Xu, Q., Liu, B. et al., Modeling of grain selection during directional solidification of single crystal superalloy turbine blade castings. JOM, Volume 62, Issue 5, 2010, pp.30-34.
DOI: 10.1007/s11837-010-0074-y
Google Scholar
[5]
Kazakov A.A., Oryshchenko A.S., Fomina O.V., Zhitenev A.I., Vikhareva T.V., Controlling behavior of δ-ferrite in nitrogen-containing chromium–nickel–manganese steels. Inorganic Materials: Applied Research. 2017 Nov 1;8(6):817-26.
DOI: 10.1134/s2075113317060077
Google Scholar
[6]
Kazakov A.A., Shakhmatov A., Badrak R. and Kolpishon E., Metallurgical Nature of the As-Cast Microstructure of High-Nitrogen, High-Manganese Stainless Steels, Materials Performance and Characterization, Vol. 6, № 3, pp.272-280.
DOI: 10.1520/mpc20160026
Google Scholar
[7]
H. Miura, H. Ogawa, Preparation of Nanocrystalline High-Nitrogen Stainless Steel Powders by Mechanical Alloying and Their Hot Compaction. Materials Transaction 42 (2001) pp.2368-2373.
DOI: 10.2320/matertrans.42.2368
Google Scholar
[8]
V.V. Boldyrev, Mechanochemistry and Mechanical Activation of Solids,, Russian Chemical Reviews, Vol. 75, No. 3, 2002, pp.203-206.
Google Scholar
[9]
Popovich A.A., Razumov N.G., Dissolution of alloying elements and phase formation in powder materials Fe-18Cr-8Ni-12Mn-xN during mechanical alloying // Advanced Materials Letters. 2014. 5 (12) pp.683-687.
DOI: 10.5185/amlett.2014.6585
Google Scholar
[10]
Popovich A.A., Razumov N.G., Silin A.O., etc., Mechanochemical synthesis of high-alloyed powder alloys of the Fe-Cr-Ni-Mn-N system // Russian Journal of Non-Ferrous Metals. 2013. 54 (6), pp.508-512.
DOI: 10.3103/s1067821213060229
Google Scholar
[11]
Budelovskiy D.I., Petrovich S.Y., Lipin V.A., Andreeva, V.D., Mechanical alloying of powder alloy Al - Si - Ni with nanosized carbon additions, Tsvetnye Metally, №9, 2016, pp.77-82.
DOI: 10.17580/tsm.2016.09.11
Google Scholar
[12]
Baimakov A.Y., Petrovich S.Y., Lipin V.A., Shahmin A.L., Seytenov R.A., The Influence of Alloying Additions on Interaction of Aluminum Alloys with Aqueous Media, Light Metals 2015, 2015, pp.387-391.
DOI: 10.1002/9781119093435.ch64
Google Scholar
[13]
Munir Z.A., Anselmi-Tamburini U., Ohyanagi M., The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of Materials Science, Volume 41, Issue 3, pp.763-777 (2006).
DOI: 10.1007/s10853-006-6555-2
Google Scholar
[14]
R. Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Materials volume 3, pages 511-516 (2004).
DOI: 10.1038/nmat1180
Google Scholar