[1]
S.B. Qadri, E.P. Gorzkowski, B.B. Rath, C.R. Feng, R. Amarasinghe, Journal of Alloys and Compounds, 708 (2017) 67-72, http://dx.doi.org/10.1016/j.jallcom.2017.03.003.
DOI: 10.1016/j.jallcom.2017.03.003
Google Scholar
[2]
V.S. Kudyakova, R.A. Shishkin, A.A. Elagin, M.V. Baranov, A.R. Beketov, Aluminium nitride cubic modifications synthesis methods and itsfeatures. Review, http://dx.doi.org/10.1016/j.jeurceramsoc.2016.11.051.
DOI: 10.1016/j.jeurceramsoc.2016.11.051
Google Scholar
[3]
Y. Bian, M. Liu, Y. Chen, J. DiBattista, E. Chan,Y. Yang, Aluminum Nitride Thin Film Growth and Applications for Heat Dissipation, Surface & Coatings Technology (2014), http://dx.doi.org/10.1016/j.surfcoat.2014.11.060.
DOI: 10.1016/j.surfcoat.2014.11.060
Google Scholar
[4]
B. Hahn, Y. Kim, C. Ahn, J. Choi, J. Ryu, J. Kim, W. Yoon, D. Park, S. Yoon, B. Ma, Fabrication and characterization of aluminum nitride thick film coated on aluminum substrate for heat dissipation, Ceramics International, http://dx.doi.org/10.1016/j.ceramint.2016.08.128.
DOI: 10.1016/j.ceramint.2016.08.128
Google Scholar
[5]
D.V. Nazarov, M.Yu. Maximov, A.A. Popovich, P.A. Novikov, A.O. Silin, V.M. Smirnov, N.P. Bobrysheva, O.M. Osmolovskay, M.G. Osmolovsky, A.M. Rumyantsev/ Atomic layer deposition of tin oxide using tin tetraethyl for high capacity Li-ion batteries// Journal of Vacuum Science & Technology A, V. 35, Issue 1, 2017, article # 01B137, pp.1-11 (.
DOI: 10.1116/1.4972554
Google Scholar
[6]
B. Mikijelja, D. Abeb, R. Hutcheonc, AlN-based lossy ceramics for high average power microwave devices: performance–property correlation, Journal of the European Ceramic Society 23 (2003) 2705–2709.
DOI: 10.1016/s0955-2219(03)00146-8
Google Scholar
[7]
A. Mostovshchikov, A. Ilyin, A. Shmakov, K. Zolotarev Investigation of the aluminum nitride formation during the aluminum nanopowder combustion in air, Physics Procedia 84 (2016) 302-306.
DOI: 10.1016/j.phpro.2016.11.051
Google Scholar
[8]
W. Yu, H. Xie, Y. Li, L. Chen, Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid, Particuology 9 (2011) 187–191.
DOI: 10.1016/j.partic.2010.05.014
Google Scholar
[9]
H. Cong, Hongbo Ma, Xiangcheng Sun, Synthesis of aluminum nitride nanowires, Physica B 323 (2002) 354–356.
DOI: 10.1016/s0921-4526(02)01003-7
Google Scholar
[10]
M. Qin, X. Du, Z. Li, I. Humail, X. Qu, Synthesis of aluminum nitride powder by carbothermal reduction of a combustion synthesis precursor, Materials Research Bulletin 43 (2008) 2954–2960.
DOI: 10.1016/j.materresbull.2007.12.008
Google Scholar
[11]
Razumov N.G., Popovich A.A., Wang Q.-S. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying // Metals and Materials International. 2018. Vol. 24 (2). pp.363-370.
DOI: 10.1007/s12540-018-0040-8
Google Scholar
[12]
Maxim Yu Maximov, Aleksandr S Verevkin, Anna A Orlova, Pavel A Novikov, Aleksey O Silin, Oleg V Panchenko and Anatoly A Popovich, Studying of sintered WC-8Co powder with coatings of aluminum oxide produced by atomic layer deposition, Journal of Ceramic Processing Research, 18 (2017) 103–107.
Google Scholar
[13]
R. Choudhary, A. Soni, P. Mishra, D. Mishra, M. Kulkarni, Synthesis of aluminum nitride thin films andtheirpotential applications in solid state thermoluminescence dosimeters, Journal of Luminescence 155 (2014) 32–38.
DOI: 10.1016/j.jlumin.2014.06.016
Google Scholar
[14]
D. Vollath, Plasma synthesis of nanopowders, J Nanopart Res (2008) 10:39–57, http://dx.doi.org/10.1007/s11051-008-9427-7.
Google Scholar
[15]
K. Kim, Plasma synthesis and characterization of nanocrystalline aluminum nitride particles by aluminum plasma jet discharge, Journal of Crystal Growth 283 (2005) 540–546, http://dx.
DOI: 10.1016/j.jcrysgro.2005.06.018
Google Scholar
[16]
Yu. Bystrov, N. Vetrov, A. Lisenkov, Plasmachemical Synthesis of Aluminum Based Nitride Compounds in Vacuum Arc Discharge Plasma, Technical physics letters, 38 (2012), 938-940.
DOI: 10.1134/s1063785012100173
Google Scholar
[17]
T. Schupp, G. Rossbach, P. Schley, R. Goldhahn, N. Esser, C. Cobet, K. Lischka, D. Josef, MBE growth of cubic AlN on 3C-SiC substrate, Phys. Status Solidi 207 (2010) 1365–1368, http://dx.doi.org/10.1002/pssa.200983437.
DOI: 10.1002/pssa.200983437
Google Scholar
[18]
Razumov N.G., Wang Q.-S., Popovich A.A., Shamshurin A.I. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization // AIP Conference Proceedings. 2018. 1946, 020001;.
DOI: 10.1063/1.5030305
Google Scholar
[19]
D.V. Nazarov, M.Yu. Maximov, A.A. Popovich, P.A. Novikov, A.O. Silin, V.M. Smirnov, N.P. Bobrysheva, O.M. Osmolovskay, M.G. Osmolovsky, A.M. Rumyantsev/ Atomic layer deposition of tin oxide using tin tetraethyl for high capacity Li-ion batteries// Journal of Vacuum Science & Technology A, V. 35, Issue 1, 2017, article # 01B137, pp.1-11 (.
DOI: 10.1116/1.4972554
Google Scholar
[20]
Popovich A.A., Razumov N.G., Grigoriev A.V., Samokhin A.V., Sufiiarov V.Sh., Goncharov I.S., Fadeev A.A., Sinaiskii M.A. Fabrication of the Nb–16Si alloy powder for additive technologies by mechanical alloying and spheroidization in electric-arc discharge thermal plasma // Russian Journal of Non-Ferrous Metals, 2018, Vol. 59, No. 6, p.671–676.
DOI: 10.3103/s1067821218060160
Google Scholar