Effect of the Mechanical Alloying and Spark Plasma Sintering on Microstructure, Phase Composition and Chemical Elements Distribution of Nb-Si Based Composite

Article Preview

Abstract:

Synthesis of the Nb-Si in-situ composite was attempted by mechanical alloying of element powders in vario-planetary ball mill. The particles size distribution was measured by laser diffraction, microstructures were examined with scanning electronic microscope, and the phase constituent were analyzed by X-ray diffraction. The amorphization of the Si during mechanical alloying, large amount of deformation of Nb crystal structure, and after all – the formation of supersaturated solid solution of Nb was observed. To stabilize microstructure and phase composition, a spark plasma sintering was attempted. After SPS microstructure consist of three main phases – Nbss, Nb5Si3 and Nb3Si.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

617-627

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.Y. Kim, H. Tanaka, S. Hannda, Intermetallics 10 (2002) 625–634.

Google Scholar

[2] H.Z. Fu, J. Aeronaut. Mater. 18 (1998) 52–60.

Google Scholar

[3] J.L. Yu, Z.K. Li, K.F. Zhang, X. Zheng, H. Liu, H. Wang, W.S. Wang, Fail. Anal. Prev. 4 (2010) 231–234.

Google Scholar

[4] C.L. Yeh, W.H. Chen, J. Alloys Comp. 425 (2006) 216–222.

Google Scholar

[5] Z. Chen, Y.W. Yan, J. Alloys Comp. 413 (2006) 73–76.

Google Scholar

[6] J. Geng, P. Tsakiropoulos, G. Shao, Intermetallics 15 (2007) 69–76.

Google Scholar

[7] K. Chattopadhyay, G. Balachandran, R. Mitra, K.K. Ray, Intermetallics 14 (2006) 1452–1460.

Google Scholar

[8] Grigoriev, A.V., Razumov, N.G., Popovich, A.A., Samokhin, A.V. Obtaining of Nb-16Si spherical powders alloy for additive technologies by mechanical alloying and spheroidization in electric arc discharge thermal plasma. ARPN Journal of Engineering and Applied Sciences Volume 12, Issue 23, 1 December 2017, Pages 6644-6648.

DOI: 10.17073/1997-308x-2017-3-32-40

Google Scholar

[9] I. L. Svetlov. High-temperature Nb-Si composites. Part 1 Inorganic Materials: Applied Research August 2011, 2:307.

Google Scholar

[10] Orlov, A.V., Masaylo, D.V., Sufiiarov, V.S., Borisov, E.V., Polozov, I.A., Popovich, A.A. A novel approaches to components design additive manufacturing process. IOP Conference Series: Earth and Environmental Science Volume 194, Issue 2, 15 November (2018).

DOI: 10.1088/1755-1315/194/2/022026

Google Scholar

[11] Kuznetsov P.A., Zisman A.A., Petrov S.N., Goncharov, I.S. Structure and mechanical properties of austenitic 316L steel produced by selective laser melting. Russian Metallurgy (Metally) Volume 2016, Issue 10, 1 October 2016, Pages 930-934.

DOI: 10.1134/s0036029516100104

Google Scholar

[12] V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, L. Alzina, Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting, Mater. Des. 131 (2017) 12–22.

DOI: 10.1016/j.matdes.2017.05.065

Google Scholar

[13] V.A. Popovich, E. V. Borisov, V. Heurtebise, T. Riemslag, A.A. Popovich, V.S. Sufiiarov, Creep and Thermomechanical Fatigue of Functionally Graded Inconel 718 Produced by Additive Manufacturing, in: 2018: p.85–97.

DOI: 10.1007/978-3-319-72526-0_9

Google Scholar

[14] V. Kokareva, A. Agapovichev, A. Sotov, V. Smelov, V. Sufiiarov, Multi-criteria planning model of engines parts additive manufacturing, MATEC Web Conf. 224 (2018) 01119.

DOI: 10.1051/matecconf/201822401119

Google Scholar

[15] A. V Agapovichev, A. V Sotov, R.R. Kyarimov, V.P. Alexeev, V.G. Smelov, V.S. Sufiiarov, D. V Masaylo, The investigation of microstructure and mechanical properties of tool steel produced by selective laser melting technology, IOP Conf. Ser. Mater. Sci. Eng. 441 (2018) 012003.

DOI: 10.1088/1757-899x/441/1/012003

Google Scholar

[16] V. V Kokareva, V.G. Smelov, A. V Agapovichev, A. V Sotov, V.S. Sufiiarov, Development of SLM quality system for gas turbines engines parts production, IOP Conf. Ser. Mater. Sci. Eng. 441 (2018) 012024.

DOI: 10.1088/1757-899x/441/1/012024

Google Scholar

[17] V.S. Sufiiarov, A.A. Popovich, E.V. Borisov, I.A. Polozov, D.V. Masaylo, A.V. Orlov, The Effect of Layer Thickness at Selective Laser Melting, Procedia Eng. 174 (2017) 126–134.

DOI: 10.1016/j.proeng.2017.01.179

Google Scholar

[18] V.S. Sufiiarov, A.A. Popovich, E. V. Borisov, I.A. Polozov, Evolution of structure and properties of heat-resistant nickel alloy after selective laser melting, hot isostatic pressing and heat treatment, Tsvetnye Met. (2017) 77–82.

DOI: 10.17580/tsm.2017.01.13

Google Scholar

[19] V.S. Sufiyarov, E. V. Borisov, I.A. Polozov, D. V. Masailo, Control of structure formation in selective laser melting process, Tsvetnye Met. (2018) 68–74.

DOI: 10.17580/tsm.2018.07.11

Google Scholar

[20] A. V Agapovichev, A. V Sotov, R.R. Kyarimov, V.P. Alexeev, V.G. Smelov, V.S. Sufiiarov, D. V Masaylo, The investigation of microstructure and mechanical properties of tool steel produced by selective laser melting technology, IOP Conf. Ser. Mater. Sci. Eng. 441 (2018) 012003.

DOI: 10.1088/1757-899x/441/1/012003

Google Scholar

[21] I. Polozov, V. Sufiiarov, A. Popovich, D. Masaylo, A. Grigoriev, Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing, J. Alloys Compd. 763 (2018) 436–445.

DOI: 10.1016/j.jallcom.2018.05.325

Google Scholar

[22] V.S. Sufiiarov, A.A. Popovich, E. V. Borisov, I.A. Polozov, Layer thickness influence on the Inconel 718 alloy microstructure and properties under selective laser melting, Tsvetnye Met. (2016) 81–86.

DOI: 10.17580/tsm.2016.01.14

Google Scholar

[23] A.A. Popovich, V.S. Sufiiarov, I.A. Polozov, E. V. Borisov, D. V. Masaylo, P.N. Vopilovskiy, A.A. Sharonov, R.M. Tikhilov, A. V. Tsybin, A.N. Kovalenko, S.S. Bilyk, Use of Additive Techniques for Preparing Individual Components of Titanium Alloy Joint Endoprostheses, Biomed. Eng. (NY). 50 (2016) 202–205.

DOI: 10.1007/s10527-016-9619-x

Google Scholar

[24] A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy, Mater. Lett. 179 (2016) 38–41.

DOI: 10.1016/j.matlet.2016.05.064

Google Scholar

[25] A. Grigoriev, I. Polozov, V. Sufiiarov, A. Popovich, In-situ synthesis of Ti 2 AlNb-based intermetallic alloy by selective laser melting, J. Alloys Compd. 704 (2017) 434–442.

DOI: 10.1016/j.jallcom.2017.02.086

Google Scholar

[26] V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, L. Alzina, Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties, Mater. Des. 114 (2017) 441–449.

DOI: 10.1016/j.matdes.2016.10.075

Google Scholar

[27] A. V Orlov, D. V Masaylo, V.S. Sufiiarov, E. V Borisov, I.A. Polozov, A.A. Popovich, A novel approaches to components design additive manufacturing process, IOP Conf. Ser. Earth Environ. Sci. 194 (2018) 022026.

DOI: 10.1088/1755-1315/194/2/022026

Google Scholar

[28] Masaylo, D., Popovich, A., Sufiiarov, V., Borisov, E., Polozov, I., Orlov, A. Laser cladding nickel based superalloy inconel 625. METAL 2018 - 27th International Conference on Metallurgy and Materials, Conference Proceedings 2018, Pages 1618-1625.

DOI: 10.1088/1755-1315/194/4/042013

Google Scholar

[29] Popovich, A.A., Razumov, N.G., Verevkin, A.S. Effect of niobium, titanium and molybdenum additions to Sm2Fe17 obtained by mechanical alloying. ARPN Journal of Engineering and Applied Sciences Volume 11, Issue 19, 1 October 2016, Pages 11556-11560.

Google Scholar

[30] Popovich, A.A., Verevkin, A.S., Razumov, N.G., Popovich, T.A. Research of the effect of Sm2Fe17 alloying with titanium and molybdenum on magnetic properties. ARPN Journal of Engineering and Applied Sciences Volume 11, Issue 3, 2016, Pages 1745-1749.

Google Scholar

[31] Popovich, A.A., Razumov, N.G., Gyulikhandanov, E.L. Investigation of thermal stability of nanocrystalline structure high-nitrogen austenitic powder steel obtained by mechanical alloying. ARPN Journal of Engineering and Applied Sciences Volume 11, Issue 11, June 2016, Pages 7117-7120.

Google Scholar

[32] Popovich, A.A., Razumov, N.G. Dissolution of alloying elements and phase formation in powder materials Fe-18Cr-8Ni- 12Mn-xN during mechanical alloying. Advanced Materials Letters Volume 5, Issue 12, 2014, Pages 683-687.

DOI: 10.5185/amlett.2014.6585

Google Scholar

[33] Popovich, A.A., Razumov, N.G., Silin, A.O., Gulikhandanov, E.L., Anoshkin, I.V., Nasibulin, A.G., Kauppinen, E.I. Mechanochemical synthesis of high-alloyed powder alloys of the Fe-Cr-Ni-Mn-N system. Russian Journal of Non-Ferrous Metals Volume 54, Issue 6, November 2013, Pages 508-512.

DOI: 10.3103/s1067821213060229

Google Scholar

[34] A.A. Popovich, N.G. Razumov, A. V. Grigoriev, A. V. Samokhin, V.S. Sufiiarov, I.S. Goncharov, A.A. Fadeev, M.A. Sinaiskii, Fabrication of the Nb–16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma, Russ. J. Non-Ferrous Met. 59 (2018) 671–676.

DOI: 10.3103/s1067821218060160

Google Scholar

[35] I.S. Goncharov, N.G. Razumov, A.O. Silin, N.E. Ozerskoi, A.I. Shamshurin, A. Kim, Q.S. Wang, A.A. Popovich, Synthesis of Nb-based powder alloy by mechanical alloying and plasma spheroidization processes for additive manufacturing, Mater. Lett. (2019).

DOI: 10.1016/j.matlet.2019.03.014

Google Scholar