[1]
Abrokwah K.O. Characterization and modeling of plasma etch pattern dependencies in integrated circuits: dis. – Massachusetts Institute of Technology, (2006).
Google Scholar
[2]
Alexandrov S. E. et al. Low‐Temperature Atmospheric Pressure Plasma‐Enhanced CVD of Nanocomposite Coatings Molybdenum Disulfide (Filler)–Silicon Oxide (Matrix), //Advanced Materials Interfaces. – 2017. – Т. 4. – №. 18. – С. 1700241.
DOI: 10.1002/admi.201700241
Google Scholar
[3]
Alexandrov S. E., Hitchman M. L. Remote Plasma‐Enhanced CVD of Fluorinated Silicon Nitride Films //Chemical Vapor Deposition. – 1997. – Т. 3. – №. 3. – С. 111-117.
DOI: 10.1002/cvde.19970030302
Google Scholar
[4]
Alexandrov S. E., Hitchman M. L., Kovalgin A. Remote plasma‐enhanced CVD of silicon nitride films: effects of diluting nitrogen with argon. Part II: effect of nitrogen plasma parameters on layer characteristics //Advanced Materials for Optics and Electronics. – 1998. – Т. 8. – №. 1. – С. 23-29.
DOI: 10.1002/(sici)1099-0712(199801/02)8:1<23::aid-amo324>3.0.co;2-v
Google Scholar
[5]
Arnold J. C., Sawin H. H. Charging of pattern features during plasma etching //Journal of Applied Physics. – 1991. – Т. 70. – №. 10. – С. 5314-5317.
DOI: 10.1063/1.350241
Google Scholar
[6]
Bailey III A. D., Gottscho R. A. Aspect ratio independent etching: fact or fantasy? //Japanese journal of applied physics. – 1995. – Т. 34. – №. 4S. – С. (2083).
DOI: 10.1143/jjap.34.2083
Google Scholar
[7]
Coburn J.W., Winters H.F. Conductance consideration in the reactive ion etching of high aspect ratio featuers // Appl. Phys. Lett. – 1989. Vol. 55. - №26. P. 2730-2732.
DOI: 10.1063/1.101937
Google Scholar
[8]
Economou D. J., Alkire R. C. Effect of Potential Field on Ion Deflection and Shape Evolution of Trenches during Plasma‐Assisted Etching //Journal of the Electrochemical Society. – 1988. – Т. 135. – №. 4. – С. 941-949.
DOI: 10.1149/1.2095842
Google Scholar
[9]
Gottscho R. A. and Jurgensen C. W., Microscopic Uniformity in Plasma Etching,, J. Vac. Sci. Technology B, vol. 10, no. 5, pp.2133-2147, Sept./Oct. (1992).
DOI: 10.1116/1.586180
Google Scholar
[10]
Giapis K. P. et al. Microscopic and macroscopic uniformity control in plasma etching //Applied Physics Letters. – 1990. – Т. 57. – №. 10. – С. 983-985.
DOI: 10.1063/1.103532
Google Scholar
[11]
Hitchman M. L., Alexandrov S. E. Atmospheric pressure plasma-enhanced CVD for surface modification: principles and applications //Advances in Science and Technology. – Trans Tech Publications, 2006. – Т. 45. – С. 1173-1177.
Google Scholar
[12]
Ingram S. G. The influence of substrate topography on ion bombardment in plasma etching //Journal of applied physics. – 1990. – Т. 68. – №. 2. – С. 500-504.
DOI: 10.1063/1.346819
Google Scholar
[13]
Karttunen J., Kiihamaki J., Franssila S. Loading effects in deep silicon etching //Micromachining and microfabrication process technology VI. – International Society for Optics and Photonics, 2000. – Т. 4174. – С. 90-98.
DOI: 10.1117/12.396475
Google Scholar
[14]
Lukichev V. F. A new approach to aspect ratio independent etching //Microelectronic engineering. – 1998. – Т. 41. – С. 423-426.
DOI: 10.1016/s0167-9317(98)00098-7
Google Scholar
[15]
Ma Z. et al. Key Processes of Silicon-On-Glass MEMS Fabrication Technology for Gyroscope Application //Sensors. – 2018. – Т. 18. – №. 4. – С. 1240.
DOI: 10.3390/s18041240
Google Scholar
[16]
Mishin M. V. et al. A computational view on vapour phase coagulation of nanoparticles synthesized by atmospheric pressure PECVD //physica status solidi (c). – 2015. – Т. 12. – №. 7. – С. 891-903.
DOI: 10.1002/pssc.201510044
Google Scholar
[17]
Mishin M. V., Protopopova V. S., Alexandrov S. E. Plasmachemical synthesis in low-temperature atmospheric pressure plasma //Russian Journal of General Chemistry. – 2015. – Т. 85. – №. 5. – С. 1209-1221.
DOI: 10.1134/s1070363215050394
Google Scholar
[18]
Morozov O. V., Amirov I. I. Aspect-ratio-independent anisotropic silicon etching in a plasma chemical cyclic process //Russian Microelectronics. – 2007. – Т. 36. – №. 5. – С. 333-341.
DOI: 10.1134/s1063739707050071
Google Scholar
[19]
Osipov A. A., Aleksandrov S. E., Berezenko V. I. Development of Process for Fast Plasma-Chemical Through Etching of Single-Crystal Quartz in SF 6/O 2 Gas Mixture //Russian Journal of Applied Chemistry. – 2018. – Т. 91. – №. 8. – С. 1255-1261.
DOI: 10.1134/s1070427218080025
Google Scholar
[20]
Osipov A. A., Alexandrov S. E. Developing the process for through-etching of single-crystal quartz in inductively coupled plasmas //Materials, Methods &thechnologies. – 2018. – Т. 12. – С. 286-294.
Google Scholar
[21]
Osipov A. A., Alexandrov S. E., Osipov A. A. Optimization of technological parameters in plasma chemical etching of quartz single crystals //Russian Journal of Applied Chemistry. – 2016. – Т. 89. – №. 6. – С. 865-870.
DOI: 10.1134/s1070427216060033
Google Scholar
[22]
Speshilova A. B., Solov'ev Y. V., Alexandrov S. E. Plasma chemical etching of photoresist layers based on diazonaphthoquinones in an installation with remote oxygen plasma //Russian Journal of Applied Chemistry. – 2016. – Т. 89. – №. 8. – С. 1317-1321.
DOI: 10.1134/s1070427216080164
Google Scholar
[23]
Osipov A.A. et. al. Etching of SiC under Low Power Inductively-Coupled Plasma//Russian Microelectronics. – 2019. – V. 48. - №. 1. – pp.27-33.
Google Scholar
[24]
Osipov A. A., Alexandrov S., Iankevich G. The effect of a lithium niobate heating on the etching rate in SF6 ICP plasma //Materials Research Express. – (2019).
DOI: 10.1088/2053-1591/aafa9d
Google Scholar
[25]
Alexandrov S. E. et al. Plasma-etching of 2D-poled glasses: A route to dry lithography //Applied Physics Letters. – 2017. – V. 111. – №. 11. – p.111604.
DOI: 10.1063/1.4994082
Google Scholar
[26]
Popova I. et al. Micromechanical gyros & accelerometers for digital navigation & control systems //IEEE Aerospace and Electronic Systems Magazine. – 2009. – Т. 24. – №. 5. – С. 33-39.
DOI: 10.1109/maes.2009.5109951
Google Scholar
[27]
Shaqfeh E. S. G., Jurgensen C. W. Simulation of reactive ion etching pattern transfer //Journal of Applied Physics. – 1989. – Т. 66. – №. 10. – С. 4664-4675.
DOI: 10.1063/1.343823
Google Scholar