The Use of the TMA as Stabilizing Reagent for the Li-O System Obtained by Atomic Layer Deposition

Article Preview

Abstract:

Lithium-oxygen thin films were deposited by atomic layer deposition (ALD) on the surface of silicon and stainless-steel using lithium bis (trimethylsilyl) amide (LiHMDS) and different counter-reagents (water, ozone, oxygen plasma). The deposited films were non-stable at storage in the air atmosphere. Results of scanning electron microscopy showed that films show a tendency to crystallization and peeling from the substrate surface. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy revealed that films mainly consist of LiOH/Li2CO3. Coating the surface of lithium-oxygen films with an aluminum oxide layer using the ALD trimethylaluminum (TMA) and water as precursors did not lead to a significant improvement in stability. Nevertheless, the stable films can be obtained using ALD supercycles consisting of sequential pulsing of LiHMDS-water-TMA-water at 250°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

787-794

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.J. Dundey, Thin film micro-batteries, Electrochem. Soc. Interface. 17 (2008) 44-48.

Google Scholar

[2] R. Sousa, J.F. Ribeiro, J.A. Sousa, L. M. Goncalves, J. H. Correia, All-solid-state batteries: An overview for bio applications, IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG) (2013).

DOI: 10.1109/enbeng.2013.6518400

Google Scholar

[3] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today, 18 (5) (2015) 252-264.

DOI: 10.1016/j.mattod.2014.10.040

Google Scholar

[4] A.G. Morachevskii, Thermodynamic properties and electrochemical studies of lithium-tin alloys, Rus. J. Appl.Chem., 88 (7) (2015) 1087-1105.

DOI: 10.1134/s1070427215070010

Google Scholar

[5] O. Nilsen, V. Miikkulainen, K. B. Gandrud, E. Østreng, A. Ruud, H. Fjellvåg, Atomic layer deposition of functional films for Li-ion microbatteries, Phys. Status Solidi A 211(2) (2014) 357–367.

DOI: 10.1002/pssa.201330130

Google Scholar

[6] C. Guan, J. Wang, Recent development of advanced electrode materials by atomic layer deposition for electrochemical energy storage. Adv. Sci. 3 (2016) 1500405:1-23.

DOI: 10.1002/advs.201500405

Google Scholar

[7] S. M. George, Atomic Layer Deposition: An Overview, Chem. Rev. 110(1), (2010) 111–131.

Google Scholar

[8] B. Ahmed, C. Xia, H.N. Alshareef, Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage, Nano Today 11(2) (2016) 250–271.

DOI: 10.1016/j.nantod.2016.04.004

Google Scholar

[9] D. V. Nazarov, M. Y. Maximov, P. A. Novikov, A. A. Popovich, A. O. Silin, V. M. Smirnov, A. M. Rumyantsev, Atomic layer deposition of tin oxide using tetraethyltin to produce high-capacity Li-ion batteries, J. Vac. Sci. Technol. A 35(1) (2017) 01B137.

DOI: 10.1116/1.4972554

Google Scholar

[10] M. Y. Maximov, P. A. Novikov, D. V. Nazarov, A. M. Rymyantsev, A. O. Silin, Y. Zhang, A. A. Popovich, Characterization and Electrochemical Performance at High Discharge Rates of Tin Dioxide Thin Films Synthesized by Atomic Layer Deposition, J. Electron. Mater. 46(11) (2017) 6571–6577.

DOI: 10.1007/s11664-017-5701-8

Google Scholar

[11] W. Lu, L. Liang, X. Sun, X. Sun, C. Wu, L. Hou, J. Sun, C. Yuan, Recent progresses and development of advanced atomic layer deposition towards high-performance Li-ion batteries, nanomaterials. 7(325) 2017 1-28.

DOI: 10.3390/nano7100325

Google Scholar

[12] M. E. Donders, W. M. Arnoldbik, H. C. M. Knoops, W. M. M. Kessels, P. H. L. Notten, Atomic Layer Deposition of LiCoO2 Thin-Film Electrodes for All-Solid-State Li-Ion Micro-Batteries, J. Electrochem. Soc. 160(5) (2013) A3066–A3071.

DOI: 10.1149/2.011305jes

Google Scholar

[13] B. L. Ellis, K. T. Lee, L. F. Nazar, Positive Electrode Materials for Li-Ion and Li-Batteries†, Chem. Mater. 22(3) (2010) 691–714.

DOI: 10.1021/cm902696j

Google Scholar

[14] L.S. Pechen, E.V. Makhonina, A.M. Rumyantsev, Y.M. Koshtyal, V.S. Pervov, I.L. Eremenko, Effect of the Synthesis Method on the Functional Properties of Lithium-Rich Complex Oxides Li1.2Mn0.54Ni0.13Co0.13O2, Russian Journal of Inorganic Chemistry 63(12) (2018) 1534-1540.

DOI: 10.1134/s0036023618120173

Google Scholar

[15] J. Hämäläinen, F. Munnik, T. Hatanpää, J. Holopainen, M.Ritala, M. Leskelä, Study of amorphous lithium silicate thin films grown by atomic layer deposition, J. Vac. Sci. Technol. A 30(1) (2012) 01A106.

DOI: 10.1116/1.3643349

Google Scholar

[16] V. Miikkulainen, M. Leskelä, , M. Ritala, R. L. Puurunen, Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends, J. Appl. Phys. 113(2) (2013) 021301.

DOI: 10.1063/1.4757907

Google Scholar

[17] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics, Inc, Eden Prairie, MN, (1995).

Google Scholar

[18] K. P. C. Yao, D. G. Kwabi, R. A. Quinlan, A. N. Mansour, A. Grimaud, Y.-L. Lee, Y. Shao-Horn, Thermal Stability of Li2O2 and Li2O for Li-Air Batteries: In Situ XRD and XPS Studies, J. Electrochem. Soc. 160(6) (2013) A824–A831.

DOI: 10.1149/2.069306jes

Google Scholar

[19] N. Pinna, M. Knez, Atomic Layer Deposition of Nanostructured Materials, Wiley-VCH, Weinheim, Germany, (2012).

Google Scholar