[1]
A.G. Nasibulin, T. Koltsova, L.I. Nasibulina, I.V. Anoshkin, A. Semencha, O.V. Tolochko, E.I. Kauppinen, A Novel Approach For Nanocarbon Composite Preparation, MRS Online Proceedings Library Archive, 1454 (2012) 279-286.
DOI: 10.1557/opl.2012.1296
Google Scholar
[2]
M. Baryshnikova, L. Filatov, M. Mishin, A. Uvarov, A. Kondrateva, S. Alexandrov, Evolution of the microstructure in titanium dioxide films during chemical vapor deposition, Physica Status Solidi (A) Applications and Materials, 212(7) (2015) 1533-1538.
DOI: 10.1002/pssa.201532300
Google Scholar
[3]
G.A. Turichin, V.V. Somonov, K.D. Babkin, E.V. Zemlyakov, O.G. Klimova, High-Speed Direct Laser Deposition: Technology, Equipment and Materials, Equipment and Materials, 125(1) (2016) 501-509.
DOI: 10.1088/1757-899x/125/1/012009
Google Scholar
[4]
V.S. Sufiiarov, A.A. Popovich, E.V. Borisov, I. Polozov, Selective laser melting of titanium alloy and manufacturing of gas-turbine engine part blanks, Tsvetnye Metally, 8 (2015) 76-80.
DOI: 10.17580/tsm.2015.08.11
Google Scholar
[5]
J. Wilden, J.P. Bergmann, H. Frank, S. Pinzl, Thin Plasma-Transferred-Arc Welded Coatings - an Alternative to Thermally Sprayed Coatings?, Thermal Spray 2004: Advances in Technology and Application: Proceedings of the International Thermal Spray Conference, (2004) IX.
DOI: 10.31399/asm.cp.itsc2004p0556
Google Scholar
[6]
S. Jhavar; N.K. Jain; C.P. Paul, Development of micro-plasma transferred arc (µ-PTA) wire deposition process for additive layer manufacturing applications, Journal of Materials Processing Technology, 214 (2014) 1102–1110.
DOI: 10.1016/j.jmatprotec.2013.12.016
Google Scholar
[7]
Information on http://www.kjellberg.de/Welding-Equipment/Service/Welding-Methods/PTA-Welding.html.
Google Scholar
[8]
M.M. Ferozhkhan, M. Duraiselvam, K. Ganesh kumar, R. Ravibharath, Plasma transfered arc welding of stellite 6 alloy on stainless steel for wear resistance, Procedia Technology, 25 (2016) 1305–1311.
DOI: 10.1016/j.protcy.2016.08.226
Google Scholar
[9]
M. Ulutan, K. Kilicay, O.N. Celik, Ü. Er, Microstructure and wear behaviour of plasma transferred arc (PTA)-deposited FeCrC composite coatings on AISI 5115 steel, Journal of Materials Processing Technology, 236 (2016) 26-34.
DOI: 10.1016/j.jmatprotec.2016.04.032
Google Scholar
[10]
X. Deng, G. Zhang, T. Wang, S. Ren, Z. Bai, Q. Cao, Investigations on microstructure and wear resistance of Fe-Mo alloy coating fabricated by plasma transferred arc cladding, Surface and Coatings Technology, 350 (2018) 480–487.
DOI: 10.1016/j.surfcoat.2018.07.040
Google Scholar
[11]
C. Liu, H. Peng, Y. Zhao, Y. Yuan, H.-B. Guo, H.-B. Xu, Microstructure, mechanical and corrosion properties of electron-beam-melted and plasma-transferred arc-welded WCp/NiBSi metal matrix composites, Rare Metals (2018) 1–10.
DOI: 10.1007/s12598-018-1096-9
Google Scholar
[12]
Information on https://www.yumpu.com/en/document/read/10405137/metal-powder-technology-ald-vacuum-technologies.
Google Scholar
[13]
W.D. Jones, Fundamental Principles of Powder Metallurgy, Edward Arnold Ltd., London, (1960).
Google Scholar
[14]
Y. Yuan, Z. Li, Microstructure and tribology behaviors of in-situ WC/Fe carbide coating fabricated by plasma transferred arc metallurgic reaction, Applied Surface Science, 423 (2017) 13–24.
DOI: 10.1016/j.apsusc.2017.06.080
Google Scholar
[15]
B.-A. Behrens, M. Bistron, A. Küper, Investigation of load adapted gears and shafts manufactured by compound-forging, Journal of Advanced Manufacturing Systems, 7 (2008) 175–182.
DOI: 10.1142/s0219686708001292
Google Scholar
[16]
G. Turichin, O. Klimova, K. Babkin, E. Valdaytseva, Theory and technology of welding of dissimilar materials by high power fiber laser, InLaser Optics International Conference, 30 (2014)1-1.
DOI: 10.1109/lo.2014.6886489
Google Scholar