[1]
Kurushkin, M.V., Semencha, A.V., Blinov, L.N. , Mikhailov, M.D. Chalcogenide glass of the As2S3-I-Br system. Glass Physics and Chemistry. Volume 40, Issue 2, March 2014, Pages 267-268.
DOI: 10.1134/s1087659614020114
Google Scholar
[2]
Blinov, L.N. Modelling, synthesis, and study of new glassy chalcogenide materials. Glass Physics and Chemistry. Volume 41, Issue 1, 2015, Pages 26-30.
DOI: 10.1134/s108765961501006x
Google Scholar
[3]
Kurushkin, M.V., Semencha, A.V., Blinov, L.N. , Mikhailov, M.D. Lead-containing oxyhalide glass. Glass Physics and Chemistry. Volume 40, Issue 4, July 2014, Pages 421-427.
DOI: 10.1134/s1087659614040063
Google Scholar
[4]
Blinov, L.N., Karataev, V.I. Mass spectrometry study of glasses based on sulfur, phosphorus, and arsenic. Glass Physics and Chemistry. Volume 39, Issue 4, July 2013, Pages 358-363.
DOI: 10.1134/s1087659613040020
Google Scholar
[5]
A.V. Semencha, V.A. Markov, M.V. Kurushkin. Moisture resistance of the As-S-I glasses. Advanced Materials Research Vols. 1061-1062 (2015) pp.987-990.
DOI: 10.4028/www.scientific.net/amr.1061-1062.987
Google Scholar
[6]
Dubov M., Mezentsev V., Manshina A., Povolotskiy A., Petrov Y. Waveguide fabrication in lithium-niobo-phosphate glasses by high repetition rate femtosecond laser: route to non-equilibrium material's states. (статья). Optical materials express. 2014. Vol.4. No.6. pp.1197-1206.
DOI: 10.1364/ome.4.001197
Google Scholar
[7]
de Araujo E. B., de Paiva J. A. C., de Araujo M. A. B., Sombra A. S. B. Structure and Optical Properties of Lithium Niobium-Phosphate Glasses // Phys. Stat. Sol. 1996. № 197. P. 231-240.
DOI: 10.1002/pssb.2221970130
Google Scholar
[8]
Blinov, L.N., Krilov N.I. Halogen-Containing Chalcogenide Glasses: Synthesis and Properties. «Glass physics and chemistry» 2017. Vol.43, №4, p.pp.326-329.
DOI: 10.1134/s1087659617040071
Google Scholar
[9]
Markov V.A., Manshina A.A., Povolotskiy A.V., Vasileva A.A. Olshin P.K. Structure of Lithium Niobium Containing Phosphate Glass Used to Create Optical Phase Elements under the Influence of Femtosecond Laser Radiation Glass Physics and Chemistry, 2015, vol.41, No 6, pp.572-578.
DOI: 10.1134/s1087659615060097
Google Scholar
[10]
A.A. Lipovskii, D.K. Tagantsev, I.E. Apakova, T.S. Markova, O.V. Yanush, M.G. Donato, et al., Mid-range structure of niobium-sodium-phosphate electro-optic glasses, J. Phys. Chem. B. 117 (2013) 1444–1450.
DOI: 10.1021/jp3081244
Google Scholar
[11]
M.G. Donato, M. Gagliardi, L. Sirleto, G. Messina, A.A. Lipovskii, D.K. Tagantsev, et al., Raman optical amplification properties of sodium-niobium-phosphate glasses, Appl. Phys. Lett. 97.
DOI: 10.1063/1.3525162
Google Scholar
[12]
Maass P.,Towards a theory for the mixed alkali effect in glasses,1999,Journal of Non-Crystalline Solids, vol.255,No1,pp.35-46.
DOI: 10.1016/s0022-3093(99)00422-6
Google Scholar
[13]
Hendrickson J.R., Bray P.J.,THEORY FOR THE MIXED ALKALI EFFECT IN GLASS - 2.,1972,Physics and Chemistry of Glasses,vol.13,No4, pp.107-115.
Google Scholar
[14]
Kjeldsen J., Smedskjaer M.M., Mauro J.C., Yue Y.,On the origin of the mixed alkali effect on indentation in silicate glasses,2014,Journal of Non-Crystalline Solids, vol.406,pp.22-26.
DOI: 10.1016/j.jnoncrysol.2014.09.036
Google Scholar
[15]
Pronkin A.A., Murin I.V. Development of the R.L. Muller Model of the Microhetero-geneous Structure of Glass and Its Application for Various Glass Types. Glass Physics and Chemistry, 2015, vol.41, No 1, pp.35-41.
DOI: 10.1134/s1087659615010228
Google Scholar
[16]
Corbridge D. E. C. The structural chemistry of phosphorus compounds // Topics in phosphorus chemistry. 1966. V. 3. P. 57-394.
Google Scholar
[17]
P.K. Ol'shin, A.V. Povolotskii, A.A. Man'shina, V.A. Markov, I.A. Sokolov, Glass Physics and Chemistry, 2017, Vol. 43, No. 4, p.294–297.
Google Scholar
[18]
de Almeida E. F., de Paiva J. A. C., Sombra A. S. B. Infrared and complex dielectric function studies of LiNbO3 in niobate glass-ceramics // J. of Mat. Sci. 2000. № 35. P. 1555-1559.
DOI: 10.1002/(sici)1521-396x(199903)172:1<255::aid-pssa255>3.0.co;2-r
Google Scholar
[19]
de Andrade J. S., Pinheiro A. G., Vascocelos I. F., Sasaki J. M., de Paiva J. A. C., Valente M. A., Sombra A. S. B. Raman and infrared spectra of KNbO3 in niobate ceramics // J. Phys. Condens. Matter. 1999. № 11. P. 4451-4460.
DOI: 10.1088/0953-8984/11/22/315
Google Scholar
[20]
de Araujo E. B., de Paiva J. A. C., de Araujo M. A. B., Sombra A. S. B. Structure and Optical Properties of Lithium Niobium-Phosphate Glasses // Phys. Stat. Sol. 1996. № 197. P. 231-240.
DOI: 10.1002/pssb.2221970130
Google Scholar
[21]
Sunghun Lee, Hana Yoon, Ilsun Yoon, Bongsoo Kim. Single Crystalline NbO2 Nanowire Synthesis by Chemical Vapor Transport // Method Method. Bull. Korean Chem. Soc. 2012, Vol. 33, No. 3. P. 839-842.
DOI: 10.5012/bkcs.2012.33.3.839
Google Scholar
[22]
Valente M. A., Bih L., Bih H., Graça M. P. F. Crystallization and physical properties of alkali phosphomolybdate glasses containing niobium oxide // Phys. Status Solidi C. 2011. V. 8. P. 3091-3094.
DOI: 10.1002/pssc.201000765
Google Scholar
[23]
Mazali I. O., Barbosa L. C., Alves O. L. Preparation and characterization of new niobophosphate glasses in the Li2O-Nb2O5-CaO-P2O5 system // Journal of Materials Science. 2004. № 39. P. 1987-1995.
DOI: 10.1023/b:jmsc.0000017760.85512.60
Google Scholar
[24]
Sanditov D.S. Estimation of the volume of fluctuation microvoids in silicate glasses. Physics and chemistry of glass. 1977. Vol. 3. No. 6. pp.580-584.
Google Scholar