[1]
Gevorgian S. Ferroelectrics in microwave devices, circuits and systems: physics, modeling, fabrication and measurements. – Springer Science & Business Media, (2009).
Google Scholar
[2]
Romanofsky R. R., Toonen R. C. Past, present and future of ferroelectric and multiferroic thin films for array antennas // Multidimensional Systems and Signal Processing. – 2018. – Т. 29. – №. 2. – С. 475-487.
DOI: 10.1007/s11045-016-0449-5
Google Scholar
[3]
Zhang Z. et al. Microwave bandpass filters tuned by the magnetization of ferrite substrates // IEEE Magnetics Letters. – 2017. – Т. 8. – С. 1-4.
Google Scholar
[4]
Aslam S. et al. Microwave monolithic filter and phase shifter using magnetic nanostructures // AIP Advances. – 2018. – Т. 8. – №. 5. – С. 056624.
DOI: 10.1063/1.5006293
Google Scholar
[5]
Gutfleisch O. et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient // Advanced materials. – 2011. – Т. 23. – №. 7. – С. 821-842.
DOI: 10.1002/adma.201002180
Google Scholar
[6]
Stamps R. L. et al. The 2014 magnetism roadmap // Journal of Physics D: Applied Physics. – 2014. – Т. 47. – №. 33. – С. 333001.
Google Scholar
[7]
Wu J. M., Huang H. L. Microwave properties of zinc, barium and lead borosilicate glasses // Journal of non-crystalline solids. – 1999. – Т. 260. – №. 1-2. – С. 116-124.
DOI: 10.1016/s0022-3093(99)00513-x
Google Scholar
[8]
Letz M. Microwave Dielectric Properties of Glasses and Bulk Glass Ceramics //Microwave Materials and Applications. – 2017. – Т. 1.
DOI: 10.1002/9781119208549.ch7
Google Scholar
[9]
N. G. Popravko, A. S. Sidorkin, S. D. Milovidova, O. V. Rogazinskaya Structure and Electrical Properties of Nanocomposites with TGS Inclusions // Ferroelectrics. – 2013. – V. 443. – No.1. – P. 8–15.
DOI: 10.1080/00150193.2013.778577
Google Scholar
[10]
Ciżman A., Rogacki K., Rysiakiewicz-Pasek E., Antropova T., Pshenko O., Poprawski R. Magnetic properties of novel magnetic porous glass-based multiferroic nanocomposites // Journal of Alloys and Compounds. 2015. V. 649. P. 447-452.
DOI: 10.1016/j.jallcom.2015.07.106
Google Scholar
[11]
Malinin V.R., Evstropyev K.K. The study of the diffusion processes of Na, K, Rb, Cs in solid alkali silicate glasses. // Radiochemistry.1972. V. 14. No. 1. P. 160-162.
Google Scholar
[12]
Sviridov S.I., Eliseeva N.P. Interaction of glasses with nitrate melts in the systems containing Na+, K+, and Ba2+. // Glass Physics and Chemistry. 1999. Т. 25. № 2. С. 163-171.
Google Scholar
[13]
Microwave Electronics: Measurement and Materials Characterization L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan and V. K. Varadan 2004 John Wiley & Sons, Ltd ISBN: 0-470-84492-2.
DOI: 10.1002/0470020466
Google Scholar
[14]
Klimchitskaya, G. L., & Mostepanenko, V. M. (2017). Casimir free energy of dielectric films: Classical limit, low-temperature behavior and control. Journal of Physics Condensed Matter, 29(27), Article number 275701.
DOI: 10.1088/1361-648x/aa718c
Google Scholar
[15]
Pleshakov, I. V., Popov, P. S., Dudkin, V. I., & Kuz'min, Y. I. (2017). Spin echo processor in functional electronic devices: Control of responses in processing of multipulse trains. Journal of Communications Technology and Electronics, 62(6), 583-587.
DOI: 10.1134/s1064226917060171
Google Scholar
[16]
Bordag, M., Klimchitskaya, G. L., & Mostepanenko, V. M. (2018). Nonperturbative theory of atom-surface interaction: Corrections at short separations. Journal of Physics Condensed Matter, 30(5).
DOI: 10.1088/1361-648x/aaa46e
Google Scholar
[17]
Lomanova, N. A., Pleshakov, I. V., Volkov, M. P., & Gusarov, V. V. (2016). Magnetic properties of aurivillius phases Bim+1Fem−3Ti3O3m+3 with m = 5.5, 7, 8. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 214, 51-56.
DOI: 10.1016/j.mseb.2016.08.001
Google Scholar
[18]
Berinskii, I. E., & Krivtsov, A. M. (2016). A hyperboloid structure as a mechanical model of the carbon bond. International Journal of Solids and Structures, 96, 145-152.
DOI: 10.1016/j.ijsolstr.2016.06.014
Google Scholar
[19]
Bouravleuv, A., Cirlin, G., Reznik, R., Khrebtov, A., Samsonenko, Y., Werner, P., Soshnikov, I., Savin, A Lipsanen, H. (2016). Growth and properties of self-catalyzed (in,mn)as nanowires. Physica Status Solidi - Rapid Research Letters, 10(7), 554-557.
DOI: 10.1002/pssr.201600097
Google Scholar
[20]
Adam'yan, Y. E., Belov, A. A., Greshnevikov, K. V., Zhabko, G. P., Kolodkin, I. S., Krivosheev, S. I., Magazinov, S.G., Svechnikov, E.L.. Titkov, V. V. (2016). Detecting transverse material boundaries in multilayer anthropogenic structures. Russian Journal of Nondestructive Testing, 52(4), 185-196.
DOI: 10.1134/s106183091604001x
Google Scholar
[21]
Vasilyev, A. A., & Golikov, P. A. (2018). Carbon diffusion coefficient in alloyed ferrite. Materials Physics and Mechanics, 39(1), 111-119.
Google Scholar
[22]
Pleshakov, I. V., Popov, P. S., Dudkin, V. I., & Kuz'min, Y. I. (2017). Spin echo processor in functional electronic devices: Control of responses in processing of multipulse trains. Journal of Communications Technology and Electronics, 62(6), 583-587.
DOI: 10.1134/s1064226917060171
Google Scholar
[23]
Tsemenko, V. N., Tolochko, O. V., Kol'tsova, T. S., Ganin, S. V., & Mikhailov, V. G. (2018). Fabrication, structure and properties of a composite from aluminum matrix reinforced with carbon nanofibers. Metal Science and Heat Treatment, 60(1-2), 24-31.
DOI: 10.1007/s11041-018-0235-0
Google Scholar
[24]
Atroshenko, S. A., Korolyov, I. A., & Didenko, N. (2016). Evaluation of physico-mechanical properties of high-chromium tool steels modified with harrington method. Materials Physics and Mechanics, 26(1), 26-29.
Google Scholar
[25]
Kolesnikova, A. L., Gutkin, M. Y., & Romanov, A. E. (2018). Analytical elastic models of finite cylindrical and truncated spherical inclusions. International Journal of Solids and Structures, 143, 59-72.
DOI: 10.1016/j.ijsolstr.2018.02.032
Google Scholar
[26]
Andronov, A., Budylina, E., Shkitun, P., Gabdullin, P., Gnuchev, N., Kvashenkina, O., & Arkhipov, A. (2018). Characterization of thin carbon films capable of low-field electron emission. Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, 36(2).
DOI: 10.1116/1.5009906
Google Scholar
[27]
Nikitchenko, A. I., Azovtsev, A. V., & Pertsev, N. A. (2018). Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix. Journal of Physics Condensed Matter, 30(1).
DOI: 10.1088/1361-648x/aa9bd1
Google Scholar
[28]
Ovid'Ko, I. A., & Sheinerman, A. G. (2017). Grain boundary sliding, triple junction disclinations and strain hardening in ultrafine-grained and nanocrystalline metals. International Journal of Plasticity, 96, 227-241.
DOI: 10.1016/j.ijplas.2017.05.005
Google Scholar
[29]
Babicheva, R. I., Dmitriev, S. V., Bachurin, D. V., Srikanth, N., Zhang, Y., Kok, S. W., & Zhou, K. (2017). Effect of grain boundary segregation of co or ti on cyclic deformation of aluminium bi-crystals. International Journal of Fatigue, 102, 270-281.
DOI: 10.1016/j.ijfatigue.2017.01.038
Google Scholar
[30]
Popovich, V. A., Borisov, E. V., Popovich, A. A., Sufiiarov, V. S., Masaylo, D. V., & Alzina, L. (2017). Functionally graded inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Materials and Design, 114, 441-449.
DOI: 10.1016/j.matdes.2016.10.075
Google Scholar
[31]
Zhao, Y., Liu, Z., Zhang, Y., Mentbayeva, A., Wang, X., Maximov, M. Y., Liu, B., Bakenov, Z., Yin, F. (2017). Facile synthesis of SiO2@C nanoparticles anchored on MWNT as high-performance anode materials for li-ion batteries. Nanoscale Research Letters, 12, Article number 459.
DOI: 10.1186/s11671-017-2226-2
Google Scholar
[32]
Lomanova, N. A., Pleshakov, I. V., Volkov, M. P., & Gusarov, V. V. (2016). Magnetic properties of aurivillius phases Bim+1Fem−3Ti3O3m+3 with m = 5.5, 7, 8. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 214, 51-56.
DOI: 10.1016/j.mseb.2016.08.001
Google Scholar
[33]
Alekseeva, I. P., Dymshits, O. S., Zhilin, A. A., & Khubetsov, A. A. (2016). The crystallization of glasses of the MgO-Al2O3-SiO2-TiO2-ZrO2-Y2O3system and the nature of a new yttrium-containing crystalline phase. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 83(2), 137-139.
DOI: 10.1364/jot.83.000137
Google Scholar
[34]
Klochkov, Y., Gazizulina, A., Golovin, N., Glushkova, A., & Zh, S. (2018). Information model-based forecasting of technological process state. Paper presented at the 2017 International Conference on Infocom Technologies and Unmanned Systems: Trends and Future Directions, ICTUS 2017, 2018-January, 709-712.
DOI: 10.1109/ictus.2017.8286099
Google Scholar
[35]
Kamenskii, A. N., & Lipovskaia, M. Y. (2016). A diffractometric method of studying the polarization process of glasses. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 83(5), 283-285.
DOI: 10.1364/jot.83.000283
Google Scholar
[36]
Kamenskii, A. N., Reduto, I. V., Petrikov, V. D., & Lipovskii, A. A. (2016). Effective diffraction gratings via acidic etching of thermally poled glass. Optical Materials, 62, 250-254.
DOI: 10.1016/j.optmat.2016.09.074
Google Scholar
[37]
Zhurikhina, V., Sadrieva, Z., & Lipovskii, A. (2017). Single-mode channel optical waveguides formed by the glass poling. Optik, 137, 203-208.
DOI: 10.1016/j.ijleo.2017.03.006
Google Scholar
[38]
Andreeva, N. V., Naberezhnov, A. A., Tomkovich, M. V., Nacke, B., Kichigin, V., Rudskoy, A. I., & Filimonov, A. V. (2016). Surface morphology and structure of double-phase magnetic alkali borosilicate glasses. Metal Science and Heat Treatment, 58(7-8), 479-482.
DOI: 10.1007/s11041-016-0039-z
Google Scholar