Formation of New Glass-Ceramic Materials with Controllable Dielectric and Magnetic Properties

Article Preview

Abstract:

Materials with strong susceptibility with respect to the electromagnetic field, namely, ferroelectric (FE) and ferromagnetic (FM) materials are of great interest for modern electronics. On the basis of ferroelectrics, devices such as varicades, delay lines, phase shifters, etc. are being actively developed. Ferromagnets (primarily ferrites) serve as the basis for directional couplers, circulators, valves, filters, phased antenna arrays, etc. Today, the most common method of creating functional composites, combining dielectric and magnetic properties, is the introduction of classical ferroelectrics, such as triglycine sulfate, Siegnette salt (KNaC4H4O6∙4H2O), sodium nitrite, etc. in iron-containing matrices. The relevance of this approach is due to the fact that when a ferroelectric is introduced into the FM matrix, it becomes possible to create composite multiferroic materials with two types of ordering (electric and magnetic). In this paper, we study the possibilities of creating glass-ceramic multiferroic materials based on Siegnette salt and barium titanate, introduced in the pore space of ferromagnetic glass, formed by ion exchange between alkaline glass cations and salt melt. For obtaining porous glass-ceramic materials by the method of ion exchange, potassium iron-containing silicate glasses are used in the work. 15K2O·20Fe2O3·55SiO2, mol. % (KFeSi).

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Gevorgian S. Ferroelectrics in microwave devices, circuits and systems: physics, modeling, fabrication and measurements. – Springer Science & Business Media, (2009).

Google Scholar

[2] Romanofsky R. R., Toonen R. C. Past, present and future of ferroelectric and multiferroic thin films for array antennas // Multidimensional Systems and Signal Processing. – 2018. – Т. 29. – №. 2. – С. 475-487.

DOI: 10.1007/s11045-016-0449-5

Google Scholar

[3] Zhang Z. et al. Microwave bandpass filters tuned by the magnetization of ferrite substrates // IEEE Magnetics Letters. – 2017. – Т. 8. – С. 1-4.

Google Scholar

[4] Aslam S. et al. Microwave monolithic filter and phase shifter using magnetic nanostructures // AIP Advances. – 2018. – Т. 8. – №. 5. – С. 056624.

DOI: 10.1063/1.5006293

Google Scholar

[5] Gutfleisch O. et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient // Advanced materials. – 2011. – Т. 23. – №. 7. – С. 821-842.

DOI: 10.1002/adma.201002180

Google Scholar

[6] Stamps R. L. et al. The 2014 magnetism roadmap // Journal of Physics D: Applied Physics. – 2014. – Т. 47. – №. 33. – С. 333001.

Google Scholar

[7] Wu J. M., Huang H. L. Microwave properties of zinc, barium and lead borosilicate glasses // Journal of non-crystalline solids. – 1999. – Т. 260. – №. 1-2. – С. 116-124.

DOI: 10.1016/s0022-3093(99)00513-x

Google Scholar

[8] Letz M. Microwave Dielectric Properties of Glasses and Bulk Glass Ceramics //Microwave Materials and Applications. – 2017. – Т. 1.

DOI: 10.1002/9781119208549.ch7

Google Scholar

[9] N. G. Popravko, A. S. Sidorkin, S. D. Milovidova, O. V. Rogazinskaya Structure and Electrical Properties of Nanocomposites with TGS Inclusions // Ferroelectrics. – 2013. – V. 443. – No.1. – P. 8–15.

DOI: 10.1080/00150193.2013.778577

Google Scholar

[10] Ciżman A., Rogacki K., Rysiakiewicz-Pasek E., Antropova T., Pshenko O., Poprawski R. Magnetic properties of novel magnetic porous glass-based multiferroic nanocomposites // Journal of Alloys and Compounds. 2015. V. 649. P. 447-452.

DOI: 10.1016/j.jallcom.2015.07.106

Google Scholar

[11] Malinin V.R., Evstropyev K.K. The study of the diffusion processes of Na, K, Rb, Cs in solid alkali silicate glasses. // Radiochemistry.1972. V. 14. No. 1. P. 160-162.

Google Scholar

[12] Sviridov S.I., Eliseeva N.P. Interaction of glasses with nitrate melts in the systems containing Na+, K+, and Ba2+. // Glass Physics and Chemistry. 1999. Т. 25. № 2. С. 163-171.

Google Scholar

[13] Microwave Electronics: Measurement and Materials Characterization L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan and V. K. Varadan 2004 John Wiley & Sons, Ltd ISBN: 0-470-84492-2.

DOI: 10.1002/0470020466

Google Scholar

[14] Klimchitskaya, G. L., & Mostepanenko, V. M. (2017). Casimir free energy of dielectric films: Classical limit, low-temperature behavior and control. Journal of Physics Condensed Matter, 29(27), Article number 275701.

DOI: 10.1088/1361-648x/aa718c

Google Scholar

[15] Pleshakov, I. V., Popov, P. S., Dudkin, V. I., & Kuz'min, Y. I. (2017). Spin echo processor in functional electronic devices: Control of responses in processing of multipulse trains. Journal of Communications Technology and Electronics, 62(6), 583-587.

DOI: 10.1134/s1064226917060171

Google Scholar

[16] Bordag, M., Klimchitskaya, G. L., & Mostepanenko, V. M. (2018). Nonperturbative theory of atom-surface interaction: Corrections at short separations. Journal of Physics Condensed Matter, 30(5).

DOI: 10.1088/1361-648x/aaa46e

Google Scholar

[17] Lomanova, N. A., Pleshakov, I. V., Volkov, M. P., & Gusarov, V. V. (2016). Magnetic properties of aurivillius phases Bim+1Fem−3Ti3O3m+3 with m = 5.5, 7, 8. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 214, 51-56.

DOI: 10.1016/j.mseb.2016.08.001

Google Scholar

[18] Berinskii, I. E., & Krivtsov, A. M. (2016). A hyperboloid structure as a mechanical model of the carbon bond. International Journal of Solids and Structures, 96, 145-152.

DOI: 10.1016/j.ijsolstr.2016.06.014

Google Scholar

[19] Bouravleuv, A., Cirlin, G., Reznik, R., Khrebtov, A., Samsonenko, Y., Werner, P., Soshnikov, I., Savin, A Lipsanen, H. (2016). Growth and properties of self-catalyzed (in,mn)as nanowires. Physica Status Solidi - Rapid Research Letters, 10(7), 554-557.

DOI: 10.1002/pssr.201600097

Google Scholar

[20] Adam'yan, Y. E., Belov, A. A., Greshnevikov, K. V., Zhabko, G. P., Kolodkin, I. S., Krivosheev, S. I., Magazinov, S.G., Svechnikov, E.L.. Titkov, V. V. (2016). Detecting transverse material boundaries in multilayer anthropogenic structures. Russian Journal of Nondestructive Testing, 52(4), 185-196.

DOI: 10.1134/s106183091604001x

Google Scholar

[21] Vasilyev, A. A., & Golikov, P. A. (2018). Carbon diffusion coefficient in alloyed ferrite. Materials Physics and Mechanics, 39(1), 111-119.

Google Scholar

[22] Pleshakov, I. V., Popov, P. S., Dudkin, V. I., & Kuz'min, Y. I. (2017). Spin echo processor in functional electronic devices: Control of responses in processing of multipulse trains. Journal of Communications Technology and Electronics, 62(6), 583-587.

DOI: 10.1134/s1064226917060171

Google Scholar

[23] Tsemenko, V. N., Tolochko, O. V., Kol'tsova, T. S., Ganin, S. V., & Mikhailov, V. G. (2018). Fabrication, structure and properties of a composite from aluminum matrix reinforced with carbon nanofibers. Metal Science and Heat Treatment, 60(1-2), 24-31.

DOI: 10.1007/s11041-018-0235-0

Google Scholar

[24] Atroshenko, S. A., Korolyov, I. A., & Didenko, N. (2016). Evaluation of physico-mechanical properties of high-chromium tool steels modified with harrington method. Materials Physics and Mechanics, 26(1), 26-29.

Google Scholar

[25] Kolesnikova, A. L., Gutkin, M. Y., & Romanov, A. E. (2018). Analytical elastic models of finite cylindrical and truncated spherical inclusions. International Journal of Solids and Structures, 143, 59-72.

DOI: 10.1016/j.ijsolstr.2018.02.032

Google Scholar

[26] Andronov, A., Budylina, E., Shkitun, P., Gabdullin, P., Gnuchev, N., Kvashenkina, O., & Arkhipov, A. (2018). Characterization of thin carbon films capable of low-field electron emission. Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, 36(2).

DOI: 10.1116/1.5009906

Google Scholar

[27] Nikitchenko, A. I., Azovtsev, A. V., & Pertsev, N. A. (2018). Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix. Journal of Physics Condensed Matter, 30(1).

DOI: 10.1088/1361-648x/aa9bd1

Google Scholar

[28] Ovid'Ko, I. A., & Sheinerman, A. G. (2017). Grain boundary sliding, triple junction disclinations and strain hardening in ultrafine-grained and nanocrystalline metals. International Journal of Plasticity, 96, 227-241.

DOI: 10.1016/j.ijplas.2017.05.005

Google Scholar

[29] Babicheva, R. I., Dmitriev, S. V., Bachurin, D. V., Srikanth, N., Zhang, Y., Kok, S. W., & Zhou, K. (2017). Effect of grain boundary segregation of co or ti on cyclic deformation of aluminium bi-crystals. International Journal of Fatigue, 102, 270-281.

DOI: 10.1016/j.ijfatigue.2017.01.038

Google Scholar

[30] Popovich, V. A., Borisov, E. V., Popovich, A. A., Sufiiarov, V. S., Masaylo, D. V., & Alzina, L. (2017). Functionally graded inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Materials and Design, 114, 441-449.

DOI: 10.1016/j.matdes.2016.10.075

Google Scholar

[31] Zhao, Y., Liu, Z., Zhang, Y., Mentbayeva, A., Wang, X., Maximov, M. Y., Liu, B., Bakenov, Z., Yin, F. (2017). Facile synthesis of SiO2@C nanoparticles anchored on MWNT as high-performance anode materials for li-ion batteries. Nanoscale Research Letters, 12, Article number 459.

DOI: 10.1186/s11671-017-2226-2

Google Scholar

[32] Lomanova, N. A., Pleshakov, I. V., Volkov, M. P., & Gusarov, V. V. (2016). Magnetic properties of aurivillius phases Bim+1Fem−3Ti3O3m+3 with m = 5.5, 7, 8. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 214, 51-56.

DOI: 10.1016/j.mseb.2016.08.001

Google Scholar

[33] Alekseeva, I. P., Dymshits, O. S., Zhilin, A. A., & Khubetsov, A. A. (2016). The crystallization of glasses of the MgO-Al2O3-SiO2-TiO2-ZrO2-Y2O3system and the nature of a new yttrium-containing crystalline phase. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 83(2), 137-139.

DOI: 10.1364/jot.83.000137

Google Scholar

[34] Klochkov, Y., Gazizulina, A., Golovin, N., Glushkova, A., & Zh, S. (2018). Information model-based forecasting of technological process state. Paper presented at the 2017 International Conference on Infocom Technologies and Unmanned Systems: Trends and Future Directions, ICTUS 2017, 2018-January, 709-712.

DOI: 10.1109/ictus.2017.8286099

Google Scholar

[35] Kamenskii, A. N., & Lipovskaia, M. Y. (2016). A diffractometric method of studying the polarization process of glasses. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 83(5), 283-285.

DOI: 10.1364/jot.83.000283

Google Scholar

[36] Kamenskii, A. N., Reduto, I. V., Petrikov, V. D., & Lipovskii, A. A. (2016). Effective diffraction gratings via acidic etching of thermally poled glass. Optical Materials, 62, 250-254.

DOI: 10.1016/j.optmat.2016.09.074

Google Scholar

[37] Zhurikhina, V., Sadrieva, Z., & Lipovskii, A. (2017). Single-mode channel optical waveguides formed by the glass poling. Optik, 137, 203-208.

DOI: 10.1016/j.ijleo.2017.03.006

Google Scholar

[38] Andreeva, N. V., Naberezhnov, A. A., Tomkovich, M. V., Nacke, B., Kichigin, V., Rudskoy, A. I., & Filimonov, A. V. (2016). Surface morphology and structure of double-phase magnetic alkali borosilicate glasses. Metal Science and Heat Treatment, 58(7-8), 479-482.

DOI: 10.1007/s11041-016-0039-z

Google Scholar