Electronic Structure and Ionic Transport in Phosphate Glass with Pyrophosphate Structural Elements

Article Preview

Abstract:

The electronic structure of lithium pyrophosphates (Li4P2O7) and sodium (Na4P2O7) was calculated by the density functional theory method. The calculations were performed for ordered (crystalline) and disordered (corresponding to glassy) structural states of lithium and sodium pyrophosphates. The disordering of the structure is simulated by ab initio molecular dynamics from crystal state with the same atomic basis as used for ideal crystal electronic calculations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

864-870

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.G. Donato, M. Gagliardi, L. Sirleto, G. Messina, A.A. Lipovskii, D.K. Tagantsev, et al., Raman optical amplification properties of sodium-niobium-phosphate glasses, Appl. Phys. Lett. 97 (2010).

DOI: 10.1063/1.3525162

Google Scholar

[2] A.A. Lipovskii, D.K. Tagantsev, I.E. Apakova, T.S. Markova, O.V. Yanush, M.G. Donato, et al., Mid-range structure of niobium-sodium-phosphate electro-optic glasses, J. Phys. Chem. B. 117 (2013) 1444–1450.

DOI: 10.1021/jp3081244

Google Scholar

[3] L. Sirleto, M.G. Donato, G. Messina, S. Santangelo, A.A. Lipovskii, D.K. Tagantsev, et al., Enhanced raman gain coefficients and bandwidths of sodium-niobium-phosphate glasses for Raman gain media, in: CLEO/Europe - EQEC 2009 - Eur. Conf. Lasers Electro-Optics Eur. Quantum Electron. Conf., 2009.

DOI: 10.1109/cleoe-eqec.2009.5196549

Google Scholar

[4] L. Sirleto, M.G. Donato, G. Messina, S. Santangelo, A.A. Lipovskii, D.K. Tagantsev, et al., Raman gain in niobium-phosphate glasses, Appl. Phys. Lett. (2009).

DOI: 10.1063/1.3072354

Google Scholar

[5] D.K. Tagantsev, A.A. Lipovskii, P.C. Schultz, B. V. Tatarintsev, Phosphate glasses for GRIN structures by ion exchange, J. Non. Cryst. Solids. (2008).

DOI: 10.1016/j.jnoncrysol.2006.11.030

Google Scholar

[6] A.A. Lipovskii, V.G. Melehin, D.K. Tagantsev, B. V. Tatarintsev, General Glass Composition (GGC) and chemical durability of phosphate glasses in molten salts, in: Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B, (2008).

Google Scholar

[7] Daidouh, A.; Veiga, M. L.; Pico, C.; Martinez-Ripoll, M. A New Polymorph of Li4P2O7 Acta Crystallographica Section C, 1997, 53, 167-169/.

Google Scholar

[8] Leung, K.Y.; Calvo, C. The structure of Na4 P2 O7 at 295 K Canadian Journal of Chemistry, 1972, 50, 2519-2526.

Google Scholar

[9] Van Weser. Phosphorus and its compounds. M. 1962.687p.

Google Scholar

[10] Corbridge D. E. C. The structural chemistry of phosphorus compounds // Topics in phosphorus chemistry. 1966. V. 3. P. 57-394.

Google Scholar

[11] Naraev V.N., Pronkin A. A. Study of the nature of the carriers of electric current in the glasses of the system Na2O-P2O5 // Physics and chemical glass. 1998. V. 24. №4. pp.517-523.

Google Scholar

[12] Pronkin A. A., Murin I. V., Sokolov I. A., Ustinov Y. N. Physical and chemical properties of glasses of the system Li2O-P2O5.// Physics and chemical glass. 1997. V. 23. №5. pp.547-554.

Google Scholar

[13] Sokolov I.A. Glassy solid electrolytes. Structure and nature of conductivity. SPb, 2010, 392p.

Google Scholar

[14] Voron'ko Yu. K.; Sobol' A.A.; Shukshin V.E. Structure of Vanadium–Oxygen and Phosphorus–Oxygen Groups in Molten Alkali and Alkaline-Earth Vanadates and Phosphates: A High-Temperature Raman Scattering Study// Inorg. Mater. 2005. V.41. №10. P.1097-1106.

DOI: 10.1007/s10789-005-0267-x

Google Scholar

[15] Sridarane R.; Raje G.; Shanmukaraj D.; Kalaselvi B.J.; Santhi M.; Subramanian S.; Mohan S.; Palanivel B.; Murudan R. Investigations On Temperature Dependent Structural Evolution Of NaPO3 Glass// J. Therm. Anal. Cal. 2004. V.75. P.169-178.

DOI: 10.1023/b:jtan.0000017339.26217.db

Google Scholar

[16] L. Popovic´ , D. de Waal, J.C.A. Boeyens. Correlation between Raman wavenumbers and P-O bond lengths in crystalline inorganic phosphates// J. of Raman Spectr. 2005. V.36. P.2–11.

DOI: 10.1002/jrs.1253

Google Scholar

[17] Markov V.A., Manshina A.A., Povolotskiy A.V., Structure of Lithium Niobium Containing Phosphate Glass Used to Create Optical Phase Elements under the Influence of Femtosecond Laser Radiation. Glass Physics and Chemistry, 2015, vol.41, No 6, pp.572-578.

DOI: 10.1134/s1087659615060097

Google Scholar

[18] Sokolov I.A., Pronkin A.A., Murin I.V. Development of the R.L. Muller Model of the Microhetero-geneous Structure of Glass and Its Application for Various Glass Types. Glass Physics and Chemistry, 2015, vol.41, No 1, pp.35-41.

DOI: 10.1134/s1087659615010228

Google Scholar

[19] Sokolov I.A., Pronkin A.A., Murin I.V. The Effect of the Protonic Component of conduction on the electrical Properties of Oxide Glass. Glass Physics and Chemistry, 2015, vol.41, No 1, pp.54-58.

DOI: 10.1134/s108765961501023x

Google Scholar

[20] B. Delley (2000). From molecules to solids with the DMol3 approach,. J. Chem. Phys. 113 (18): 7756–7764.

DOI: 10.1063/1.1316015

Google Scholar

[21] Perdew, J. P.; Wang, Y. Phys. Rev. B, 45, 13244 (1992).

Google Scholar

[22] Poutanen, M., Guidetti, G., Gröschel, T. I., Borisov, O. V., Vignolini, S., Ikkala, O., & Gröschel, A. H. (2018). Block copolymer micelles for photonic fluids and crystals. ACS Nano, 12(4), 3149-3158.

DOI: 10.1021/acsnano.7b09070

Google Scholar

[23] Nikitchenko, A. I., Azovtsev, A. V., & Pertsev, N. A. (2018). Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix. Journal of Physics Condensed Matter, 30(1).

DOI: 10.1088/1361-648x/aa9bd1

Google Scholar

[24] Alekseeva, I. P., Dymshits, O. S., Zhilin, A. A., & Khubetsov, A. A. (2016). The crystallization of glasses of the MgO-Al2O3-SiO2-TiO2-ZrO2-Y2O3system and the nature of a new yttrium-containing crystalline phase. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 83(2), 137-139.

DOI: 10.1364/jot.83.000137

Google Scholar

[25] Quadflieg, T., Stolyarov, O., & Gries, T. (2017). Influence of the fabric construction parameters and roving type on the tensile property retention of high-performance rovings in warp-knitted reinforced fabrics and cement-based composites. Journal of Industrial Textiles, 47(4), 453-471.

DOI: 10.1177/1528083716652831

Google Scholar

[26] Kukushkin, S. A., Nussupov, K. K., Osipov, A. V., Beisenkhanov, N. B., & Bakranova, D. I. (2017). Structural properties and parameters of epitaxial silicon carbide films, grown by atomic substitution on the high-resistance (111) oriented silicon. Superlattices and Microstructures, 111, 899-911.

DOI: 10.1016/j.spmi.2017.07.050

Google Scholar

[27] Stolyarov, O., Quadflieg, T., & Gries, T. (2017). Characterization of shear behavior of warp-knitted fabrics applied to composite reinforcement. Journal of the Textile Institute, 108(1), 89-94.

DOI: 10.1080/00405000.2016.1153876

Google Scholar

[28] Zhao, Y., Liu, Z., Zhang, Y., Mentbayeva, A., Wang, X., Maximov, M. Y., Liu, B., Bakenov, Z., Yin, F. (2017). Facile synthesis of SiO2@C nanoparticles anchored on MWNT as high-performance anode materials for li-ion batteries. Nanoscale Research Letters, 12, Article number 459.

DOI: 10.1186/s11671-017-2226-2

Google Scholar

[29] Babich, E., Redkov, A., Reduto, I., & Lipovskii, A. (2018). Self-assembled Silver–Gold nanoisland films on glass for SERS applications. Physica Status Solidi - Rapid Research Letters, 12(1), Article number 1700226.

DOI: 10.1002/pssr.201700226

Google Scholar

[30] Romanov, N. M., Zakharova, I. B., & Lähderanta, E. (2017). Characterization of thin fullerene/cadmium telluride films and their stability under x-ray radiation by IR spectroscopy. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 84(12), 833-837.

DOI: 10.1364/jot.84.000833

Google Scholar

[31] Romanov, N. M., Osipov, V. Y., Takai, K., Touhara, H., & Hattori, Y. (2017). Infrared spectroscopic study to determine thermal resistance of the functionalized surface of a detonation nanodiamond. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 84(10), 654-657.

DOI: 10.1364/jot.84.000654

Google Scholar

[32] Puro, A., & Karov, D. D. (2016). Inverse problem of thermoelasticity of fiber gratings. Journal of Thermal Stresses, 39(5), 500-512.

DOI: 10.1080/01495739.2016.1158606

Google Scholar

[33] Emel'yanov, O. A., & Plotnikov, A. P. (2017). Determining the dependence of the capacitance of ferro-ceramic capacitors on voltage by the pulse discharge method. Measurement Techniques, 60(9), 922-927.

DOI: 10.1007/s11018-017-1294-0

Google Scholar

[34] Davydov, V. V., & Myazin, N. S. (2017). Measurement of magnetic susceptibility and curie constants of colloidal solutions in ferrofluid cells by the nuclear magnetic resonance method. Measurement Techniques, 60(5), 491-496.

DOI: 10.1007/s11018-017-1223-2

Google Scholar

[35] Lomanova, N. A., Pleshakov, I. V., Volkov, M. P., & Gusarov, V. V. (2016). Magnetic properties of aurivillius phases Bim+1Fem−3Ti3O3m+3 with m = 5.5, 7, 8. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 214, 51-56.

DOI: 10.1016/j.mseb.2016.08.001

Google Scholar

[36] Zhurikhina, V., Sadrieva, Z., & Lipovskii, A. (2017). Single-mode channel optical waveguides formed by the glass poling. Optik, 137, 203-208.

DOI: 10.1016/j.ijleo.2017.03.006

Google Scholar

[37] Kolesnikov, I. E., Golyeva, E. V., Kalinichev, A. A., Kurochkin, M. A., Lähderanta, E., & Mikhailov, M. D. (2017). Nd3+ single doped YVO4 nanoparticles for sub-tissue heating and thermal sensing in the second biological window. Sensors and Actuators, B: Chemical, 243, 338-345.

DOI: 10.1016/j.snb.2016.12.005

Google Scholar

[38] Kamenskii, A. N., Reduto, I. V., Petrikov, V. D., & Lipovskii, A. A. (2016). Effective diffraction gratings via acidic etching of thermally poled glass. Optical Materials, 62, 250-254.

DOI: 10.1016/j.optmat.2016.09.074

Google Scholar

[39] Rudskoy, A. I., Kondrat'ev, S. Y., & Sokolov, Y. A. (2016). New approach to synthesis of powder and composite materials by electron beam. part 1. technological features of the process. Metal Science and Heat Treatment, 58(1), 27-32.

DOI: 10.1007/s11041-016-9959-x

Google Scholar

[40] Andreeva, N. V., Naberezhnov, A. A., Tomkovich, M. V., Nacke, B., Kichigin, V., Rudskoy, A. I., & Filimonov, A. V. (2016). Surface morphology and structure of double-phase magnetic alkali borosilicate glasses. Metal Science and Heat Treatment, 58(7-8), 479-482.

DOI: 10.1007/s11041-016-0039-z

Google Scholar