Fusible Glass Based on Glassy Chalcogenide Type Systems Ge-S(Se)Br, Ge-S(Se)I

Article Preview

Abstract:

Theoretical and practical results on the preparation and investigation of low-melting glasses using the example of glassy chalcogenide glasses of the Ge-S-Br, Ge-Se-Br systems are presented and summarized. On the basis of fundamental properties of matter, correlations were identified with uniform positions. The glass formation regularities in the indicated chalcogenide and oxyhalide systems were determined. Areas and compositions of low-melting chalcogenide and oxyhalide glasses were considered. Approaches to obtaining of thermostable and difficult to crystallize low-melting glasses were found. Areas of their practical application were identified. On the basis of the obtained data, approaches and criteria for obtaining compositions of low-melting chalcogenide and oxide glasses with practically useful properties are formulated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

834-840

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zakery A, Elliott SR. Optical properties and applications of chalcogenide glasses: a review. Journal of Non-Crystalline Solids. 2003 Nov 15;330(1-3):1-2.

DOI: 10.1016/j.jnoncrysol.2003.08.064

Google Scholar

[2] Blinov L.N. Modelling, synthesis and study of new glassy chalcogenide materials// Glass Physics and Chemistry. 2015.V.41, №1. P.531-533.

Google Scholar

[3] Klinkov, V.A., Semencha, A.V. and Tsimerman, E.A., 2017. Advanced Materials for Fiber Communication Systems. In Internet of Things, Smart Spaces, and Next Generation Networks and Systems (pp.184-195). Springer, Cham.

DOI: 10.1007/978-3-319-67380-6_17

Google Scholar

[4] Bormashenko E., Pogreb R., Sutovski S., Levin . Optical properties and infrared optics of composite films based on polyethylene and low-melting point chalcogenide glass// Opt. Eng. 2002. V. 41. P. 295-302.

DOI: 10.1117/1.1430424

Google Scholar

[5] Gibson D.J. and Harrington J.A. Extrusion of hollow waveguideperforms with a one-dimensional photonic bandgap structure// J. Appl.Phys. 2004. V.95. №8. P.3895-3900.

DOI: 10.1063/1.1667277

Google Scholar

[6] Kuriki K., Shapira O., Hart S.D., Benoit G., Kuriki Y., Viens J.F., Bayindir M., Joannopoulos J.D. and Fink Y. Hollow multilayer photonicbandapfibers for NIR applications// Opt. Express. 2004. V.12. №8. P.1510-1517.

DOI: 10.1364/opex.12.001510

Google Scholar

[7] Isayev, A. I., Mekhtiyeva, S. I., Garibova, S. N., Alekperov, R. I., & Zeynalov, V. Z. (2011). Study of optical parameters of the Se-As chalcogenide semiconductor system containing EuF 3 impurities. Semiconductors, 45(8), 993.

DOI: 10.1134/s1063782611080100

Google Scholar

[8] Isayev, A. I., Mekhtiyeva, S. I., & Alekberov, R. I. (2016). The influence of doping by samarium on the structure and surface morphology of the As33. 3Se33. 3S33. 4, As33. 3Se33. 3Te33. 4 chalcogenide glass semiconductor films. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 18(1-2), 39-43.

Google Scholar

[9] Dieke, G.H., Crosswhite, H.M. and Crosswhite, H., 1968. Spectra and energy levels of rare earth ions in crystals.

Google Scholar

[10] Khanin, V.M., Rodnyi, P.A., Wieczorek, H. and Ronda, C.R., 2017. Electron traps in Gd 3 Ga 3 Al 2 O 12: Ce garnets doped with rare-earth ions. Technical Physics Letters, 43(5), pp.439-442.

DOI: 10.1134/s1063785017050042

Google Scholar

[11] Klinkov, V.A. and Semencha, A.V., 2018. Spectral Properties of Doped Glasses of the 35Bi2O3· 40PbO· 25Ga2O3 Composition Synthesized in a Quartz Crucible. Glass Physics and Chemistry, 44(3), pp.234-237.

DOI: 10.1134/s1087659618030057

Google Scholar

[12] Khistiaeva, V.V., Melnikov, A.S., Slavova, S.O., Sizov, V.V., Starova, G.L., Koshevoy, I.O. and Grachova, E.V., 2018. Heteroleptic β-diketonate Ln (iii) complexes decorated with pyridyl substituted pyridazine ligands: synthesis, structure and luminescence properties. Inorganic Chemistry Frontiers, 5(12), pp.3015-3027.

DOI: 10.1039/c8qi00712h

Google Scholar

[13] Alekberov, R. I., Isayev, A. I., Mekhtiyeva, S. I., & Isayeva, G. A. (2014). Role of samarium atoms in the formation of the structure of As-Se-S chalcogenide vitreous semiconductors. Semiconductors, 48(6), 796-799.

DOI: 10.1134/s1063782614060025

Google Scholar

[14] Kurushkin M.V., Semencha A.V., Blinov L.N., Milkailov M.D. Lead-containing oxyhalide glass// Glass physics and chemistry. 2014. V. 40. №4. P.421-427.

DOI: 10.1134/s1087659614040063

Google Scholar

[15] Blinov L.N., Orkina T.N. Dielectric Materials Based on Chalcogenide Glassy Systems: Properties, Ways of Preparation, Possibilities of Application// Russian Journal of Applied Chemistry. 2000. V. 73. №9. P.1561-1571.

Google Scholar

[16] Tanaka K. Layer structures in chalcogenide glasses// J.Non.cryst.Solids.1988.V.103.№1.P.149-150.

DOI: 10.1016/0022-3093(88)90428-0

Google Scholar

[17] Krylov N.I., Blinov L.N. Halogen-Containing Chalcogenide Glasses: Synthesis and Properties// Glass Physics and Chemistry. 2017. V. 43. №4. P.326-329.

DOI: 10.1134/s1087659617040071

Google Scholar