[1]
M. Dubov, V. Mezentsev, A.A. Manshina, I.A. Sokolov, A. V. Povolotskiy, Y. V. Petrov, Waveguide fabrication in lithium-niobo-phosphate glasses by high repetition rate femtosecond laser: route to non-equilibrium material's states, Opt. Mater. Express. 4 (2014) 1197.
DOI: 10.1364/ome.4.001197
Google Scholar
[2]
S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate., Opt. Express. 13 (2005) 4708–4716.
DOI: 10.1364/opex.13.004708
Google Scholar
[3]
K. Miura, M. Shimizu, M. Sakakura, T. Kurita, Y. Shimotsuma, K. Hirao, Formation Mechanism and Applications of Laser Induced Elemental Distribution in Glasses, in: Prog. Electromagn. Res. Symp., 2012: p.18–23.
Google Scholar
[4]
S. Chenu, U. Werner-Zwanziger, C. Calahoo, J.W. Zwanziger, Structure and properties of NaPO3-ZnO-Nb2O5-Al2O3glasses, J. Non. Cryst. Solids. 358 (2012) 1795–1805.
DOI: 10.1016/j.jnoncrysol.2012.05.027
Google Scholar
[5]
H. Maeda, S. Lee, T. Miyajima, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Structure and physicochemical properties of CaO–P2O5–Nb2O5–Na2O glasses, J. Non. Cryst. Solids. 432 (2016) 60–64.
DOI: 10.1016/j.jnoncrysol.2015.06.003
Google Scholar
[6]
M.K. Balapanov, I.B. Zinnurov, G.R. Akmanova, The ionic Seebeck effect and heat of cation transfer in Cu 2-δSe superionic conductors, Phys. Solid State. 48 (2006) 1868–1871.
DOI: 10.1134/s1063783406100076
Google Scholar
[7]
A.A. Man'shina, A. V. Povolotskiĭ, I.A. Sokolov, M. V. Kurushkin, The formation of optical phase structures in the volume of phosphate glasses by means of thermal diffusion caused by the action of femtosecond laser radiation, J. Opt. Technol. 82 (2015) 120.
DOI: 10.1364/jot.82.000120
Google Scholar
[8]
J. Hoyo, B. Sotillo, M. Hernandez, T. Toney Fernandez, P. Haro-González, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, J. Solis, Strong ion migration in high refractive index contrast waveguides formed by femtosecond laser pulses in phosphate glass, in: J.I. Mackenzie, H. JelÍnková, T. Taira, M. Abdou Ahmed (Eds.), Proc. SPIE - Int. Soc. Opt. Eng., 2014: p. 91351G.
DOI: 10.1117/12.2052441
Google Scholar
[9]
T. Toney Fernandez, P. Haro-González, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, J. Solis, Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass, Opt. Lett. 38 (2013) 5248.
DOI: 10.1364/ol.38.005248
Google Scholar
[10]
A. Lipovskii, V. Zhurikhina, D. Tagantsev, 2D-structuring of glasses via thermal poling: A short review, Int. J. Appl. Glas. Sci. (2017).
DOI: 10.1111/ijag.12273
Google Scholar
[11]
A.V. Redkov, V.G. Melehin, D.V. Raskhodchikov, I.V. Reshetov, D.K. Tagantsev, V.V. Zhurikhina, A.A. Lipovskii, Modifications of poled silicate glasses under heat treatment, J. Non. Cryst. Solids. 503–504 (2019) 279–283.
DOI: 10.1016/j.jnoncrysol.2018.10.011
Google Scholar
[12]
A.A. Lipovskii, A.I. Morozova, D.K. Tagantsev, Giant Discharge Current in Thermally Poled Silicate Glasses, J. Phys. Chem. C. 120 (2016) 23129–23135.
DOI: 10.1021/acs.jpcc.6b07144
Google Scholar
[13]
A.A. Lipovskii, V.V. Rusan, D.K. Tagantsev, Imprinting phase/amplitude patterns in glasses with thermal poling, Solid State Ionics. 181 (2010) 849–855.
DOI: 10.1016/j.ssi.2010.05.001
Google Scholar
[14]
A.A. Lipovskii, A.V. Redkov, A.A. Rtischeva, D. Tagantsev, V.V. Zhurikhina, Kinetics of ion-exchange-induced vitrification of glass-ceramics, J. Am. Ceram. Soc. (2018).
DOI: 10.1111/jace.16253
Google Scholar
[15]
E. Stavrou, D. Palles, E.I. Kamitsos, A. Lipovskii, D. Tagantsev, Y. Svirko, S. Honkanen, Vibrational study of thermally ion-exchanged sodium aluminoborosilicate glasses, J. Non. Cryst. Solids. 401 (2014) 232–236.
DOI: 10.1016/j.jnoncrysol.2013.12.017
Google Scholar
[16]
V.A. Klinkov, A. V Semencha, Spectral Properties of Doped Glasses of the 35Bi2O3 · 40PbO · 25Ga2O3 Composition Synthesized in a Quartz Crucible, Glas. Phys. Chem. 44 (2018) 234–237.
DOI: 10.1134/s1087659618030057
Google Scholar
[17]
H. Reuther, J. Wiegmann, W. Hinz, Thermotransport in Silicatglasern, Glasstechn. 56 (1983) 19–25.
Google Scholar
[18]
H. Reuther, W. Hinz, Thermotransport in lithium silicate glasses, Phys. Status Solidi. 59 (1980) K87–K89.
DOI: 10.1002/pssa.2210590173
Google Scholar
[19]
C.J. Meechan, G.W. Lehman, Diffusion of Au and Cu in a Temperature Gradient, J. Appl. Phys. 33 (1962) 634–641.
DOI: 10.1063/1.1702479
Google Scholar
[20]
Y. Liu, C.T. Liu, E.P. George, X.Z. Wang, Thermal diffusion and compositional inhomogeneity in cast Zr50Cu50 bulk metallic glass, Appl. Phys. Lett. 89 (2006).
DOI: 10.1063/1.2335380
Google Scholar
[21]
Y. Liu, C.T. Liu, E.P. George, X.Z. Wang, The Soret effect in bulk metallic glasses, Intermetallics. 15 (2007) 557–563.
DOI: 10.1016/j.intermet.2006.09.007
Google Scholar
[22]
A. HONDERS, J. DERKINDEREN, A. VANHEEREN, J. DEWIT, G. BROERS, The thermodynamic and thermoelectric properties of LixTiS2 and LixCoO2, Solid State Ionics. 14 (1984) 205–216.
DOI: 10.1016/0167-2738(84)90100-0
Google Scholar
[23]
S.M. Girvin, Thermoelectric power of superionic conductors, J. Solid State Chem. 25 (1978) 65–76.
DOI: 10.1016/0022-4596(78)90044-0
Google Scholar
[24]
J.F. Smith, D.T. Peterson, M.F. Smith, An interpretation of Q*in thermotransport, J. Less-Common Met. 106 (1985) 19–26.
DOI: 10.1016/0022-5088(85)90361-3
Google Scholar
[25]
S.R. de Groot, Thermodynamics of irreversible processes, Print book, Amsterdam : North Holland Pub. Co., (1951).
Google Scholar
[26]
V.A. Markov, I.A. Sokolov, M. V. Kurushkin, A. V. Povolotskiy, Electrodiffusion of alkali ions in alkali niobophosphate glasses and glass-forming melts, Int. J. Appl. Glas. Sci. 10 (2019) 69–74.
DOI: 10.1111/ijag.12435
Google Scholar