[1]
Th. I Shaheen, H. E. Emam, Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis, Int. J. Biol. Macromol. 107 (2018) 1599–1606.
DOI: 10.1016/j.ijbiomac.2017.10.028
Google Scholar
[2]
W. S. W. BaderulHisan, I. Amin, Extraction of cellulose from sawdust by using ionic liquid, Int. J. Eng. Technol. 9 (2017) 3869-3873.
DOI: 10.21817/ijet/2017/v9i5/170905123
Google Scholar
[3]
W. Kamphunthong, P. Hornsby, K. Sirisinha, Isolation of cellulose nanofibers from Para Rubberwood and their reinforcing effect in poly(vinyl alcohol) composites, J. Appl. Polym. Sci. 125 (2015) 1642–1651.
DOI: 10.1002/app.35642
Google Scholar
[4]
S. Berlioz, S. Molina-Boisseau, Y. Nishiyama, L. Heux, Gas-phase surface esterification of cellulose microfibrils and whiskers, Biomacromolecules 10 (2009) 2144–2151.
DOI: 10.1021/bm900319k
Google Scholar
[5]
L. Jong, E. Morelius, J. Zhang, M. Wolcott, J. Holbery, Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing, J. Compos. Mater. 42 (2008) 2629–2645.
DOI: 10.1177/0021998308096327
Google Scholar
[6]
A. P. Carapeto, A. M. Ferraria, A. M. Botelho do Rego, Trimethylsilylcellulose synthesis revisited, Polym. Test. 58 (2017) 236-240.
DOI: 10.1016/j.polymertesting.2017.01.008
Google Scholar
[7]
A. G. Cunha, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, A. Gandini, E. Orblin, P. Fardim, Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates, Biomacromolecules 8(2007) 1347-1352.
DOI: 10.1021/bm0700136
Google Scholar
[8]
G. Siqueira, J. Bras, A. Dufresne, New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate, Langmuir 26 (2010) 402–411.
DOI: 10.1021/la9028595
Google Scholar
[9]
N. Lin, A. Dufresne, Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees, Nanoscale 6 (2014) 5384–5393.
DOI: 10.1039/c3nr06761k
Google Scholar
[10]
A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale 3 (2011) 71–85.
DOI: 10.1039/c0nr00583e
Google Scholar
[11]
T. Inamochi, R. Funahashi, Y. Nakamura, T. Saito, A. Isogai, Effect of coexisting salt on TEMPO-mediated oxidation of wood cellulose for preparation of nanocellulose, Cellulose 24 (2017) 4097–4101.
DOI: 10.1007/s10570-017-1402-y
Google Scholar
[12]
T. Puspasari, N. Pradeep, K.-V. Peinemann, Crosslinked cellulose thin film composite nano-filtration membranes with zero salt rejection, J. Membr. Sci. 491 (2015) 132-137.
DOI: 10.1016/j.memsci.2015.05.002
Google Scholar
[13]
C. Goussé, H. Chanzy, M. L. Cerrada, E. Fleury, Surface silylation of cellulose microfibrils: preparation and rheological properties, Polymer 45 (2004) 1569–1575.
DOI: 10.1016/j.polymer.2003.12.028
Google Scholar
[14]
W. Schempp, T. Krause, U. Seifried, A. Koura, Herstellung hochsubstituierter trimethylsilyl-cellulosen im system dimethylacetamid/lithiumchlorid, Das Papier 12 (1984) 607–610.
Google Scholar
[15]
Y. He, Y. Pang, Y. Liu, X. Li, K. Wang, Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production, Energ. Fuel. 22 (2008) 2775–2781.
DOI: 10.1021/ef8000967
Google Scholar
[16]
C. L. McCormick, P. A. Callais, B. H. Hutchinson Jr., Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide, Macromolecules, 18 (1985) 2394−2401.
DOI: 10.1021/ma00154a010
Google Scholar
[17]
C. Zhang, R. Liu, J. Xiang, H. Kang, Z. Liu, Y. Huang, Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: Revisiting through molecular interactions, J. Phys. Chem. B 18 (2014) 9507−9514.
DOI: 10.1021/jp506013c
Google Scholar
[18]
C. Nouvel, I. Ydens, P. Degée, P. Dubois, E. Dellacherie, J.-L. Six, Partial or total silylation of dextran with hexamethyldisilazane, Polymer 43 (2002) 1735-1743.
DOI: 10.1016/s0032-3861(01)00778-9
Google Scholar
[19]
S. Livazovic, Z. Li, A. R. Behzad, K.-V. Peinemann, S. P. Nunes, Cellulose multilayer membranes manufacture with ionic liquid, J. Membr. Sci. 490 (2015) 282–293.
DOI: 10.1016/j.memsci.2015.05.009
Google Scholar
[20]
W. Mormann, J. Demeter, T. Wagner, Partial silylation of cellulose with predictible degree of silylation-stoichiometric silylation with hexamethyldisilazane in ammonia, Macromol. Chem. Phys. 200 (1999) 693–697.
DOI: 10.1002/(sici)1521-3935(19990401)200:4<693::aid-macp693>3.0.co;2-j
Google Scholar
[21]
A. He, D. Liu, H. Tian, Y. Jin, Q. Cheng, J. Song, Improving the yield of trimethylsilyl cellulose by activation of cellulose with ethylenediamine, Cellulose Chem. Technol. 48 (2014) 19-23.
Google Scholar