Studies on the Preparation and Application of Tetramethylsilylcellulose from Rain Tree Sawdust

Article Preview

Abstract:

The upcycling process of agricultural waste for cellulose production has been attempted. In this study, cellulose was extracted from sawdust of the rain tree using 4% (w/v) NaOH solution. 1.5 g of extracted cellulose was soaked in water and N,N-dimethylacetamide (DMA) respectively. The soaked cellulose was dissolved in dimethylacetamide/LiCl and reacted with hexamethyldisilazane (HMDS) yielding tetramethylsilylcellulose (TMSC). The IR spectrum shows the presence of-Si (CH3)3 groups: νSi-O at 1047 cm-1, νC-Si at 1252, 843 and 750 cm-1. The 1H-NMR result confirms the presence of-Si (CH3)3 groups at  0 ppm and pyranose ring protons in the range of 2.8-4.5 ppm. SEM image of TMSC shows the fibrous characteristics of cellulose while the EDX shows the presence of Si. The degree of substitution (DS) values calculated from FT-IR and EDX data are 2.33 and 2.08 respectively. 1.0% w/v TMSC solution in THF was prepared. A Small piece (2.0 cm x 4.0 cm) of filter paper was dipped into the TMSC solution for 30 min. The coated paper has an average contact angle of 116o. However the characteristic bands of the TMSC were not observed from FT-IR analysis. While the EDX shows the presence of Si on the paper surface..

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-127

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Th. I Shaheen, H. E. Emam, Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis, Int. J. Biol. Macromol. 107 (2018) 1599–1606.

DOI: 10.1016/j.ijbiomac.2017.10.028

Google Scholar

[2] W. S. W. BaderulHisan, I. Amin, Extraction of cellulose from sawdust by using ionic liquid, Int. J. Eng. Technol. 9 (2017) 3869-3873.

DOI: 10.21817/ijet/2017/v9i5/170905123

Google Scholar

[3] W. Kamphunthong, P. Hornsby, K. Sirisinha, Isolation of cellulose nanofibers from Para Rubberwood and their reinforcing effect in poly(vinyl alcohol) composites, J. Appl. Polym. Sci. 125 (2015) 1642–1651.

DOI: 10.1002/app.35642

Google Scholar

[4] S. Berlioz, S. Molina-Boisseau, Y. Nishiyama, L. Heux, Gas-phase surface esterification of cellulose microfibrils and whiskers, Biomacromolecules 10 (2009) 2144–2151.

DOI: 10.1021/bm900319k

Google Scholar

[5] L. Jong, E. Morelius, J. Zhang, M. Wolcott, J. Holbery, Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing, J. Compos. Mater. 42 (2008) 2629–2645.

DOI: 10.1177/0021998308096327

Google Scholar

[6] A. P. Carapeto, A. M. Ferraria, A. M. Botelho do Rego, Trimethylsilylcellulose synthesis revisited, Polym. Test. 58 (2017) 236-240.

DOI: 10.1016/j.polymertesting.2017.01.008

Google Scholar

[7] A. G. Cunha, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, A. Gandini, E. Orblin, P. Fardim, Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates, Biomacromolecules 8(2007) 1347-1352.

DOI: 10.1021/bm0700136

Google Scholar

[8] G. Siqueira, J. Bras, A. Dufresne, New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate, Langmuir 26 (2010) 402–411.

DOI: 10.1021/la9028595

Google Scholar

[9] N. Lin, A. Dufresne, Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees, Nanoscale 6 (2014) 5384–5393.

DOI: 10.1039/c3nr06761k

Google Scholar

[10] A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale 3 (2011) 71–85.

DOI: 10.1039/c0nr00583e

Google Scholar

[11] T. Inamochi, R. Funahashi, Y. Nakamura, T. Saito, A. Isogai, Effect of coexisting salt on TEMPO-mediated oxidation of wood cellulose for preparation of nanocellulose, Cellulose 24 (2017) 4097–4101.

DOI: 10.1007/s10570-017-1402-y

Google Scholar

[12] T. Puspasari, N. Pradeep, K.-V. Peinemann, Crosslinked cellulose thin film composite nano-filtration membranes with zero salt rejection, J. Membr. Sci. 491 (2015) 132-137.

DOI: 10.1016/j.memsci.2015.05.002

Google Scholar

[13] C. Goussé, H. Chanzy, M. L. Cerrada, E. Fleury, Surface silylation of cellulose microfibrils: preparation and rheological properties, Polymer 45 (2004) 1569–1575.

DOI: 10.1016/j.polymer.2003.12.028

Google Scholar

[14] W. Schempp, T. Krause, U. Seifried, A. Koura, Herstellung hochsubstituierter trimethylsilyl-cellulosen im system dimethylacetamid/lithiumchlorid, Das Papier 12 (1984) 607–610.

Google Scholar

[15] Y. He, Y. Pang, Y. Liu, X. Li, K. Wang, Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production, Energ. Fuel. 22 (2008) 2775–2781.

DOI: 10.1021/ef8000967

Google Scholar

[16] C. L. McCormick, P. A. Callais, B. H. Hutchinson Jr., Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide, Macromolecules, 18 (1985) 2394−2401.

DOI: 10.1021/ma00154a010

Google Scholar

[17] C. Zhang, R. Liu, J. Xiang, H. Kang, Z. Liu, Y. Huang, Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: Revisiting through molecular interactions, J. Phys. Chem. B 18 (2014) 9507−9514.

DOI: 10.1021/jp506013c

Google Scholar

[18] C. Nouvel, I. Ydens, P. Degée, P. Dubois, E. Dellacherie, J.-L. Six, Partial or total silylation of dextran with hexamethyldisilazane, Polymer 43 (2002) 1735-1743.

DOI: 10.1016/s0032-3861(01)00778-9

Google Scholar

[19] S. Livazovic, Z. Li, A. R. Behzad, K.-V. Peinemann, S. P. Nunes, Cellulose multilayer membranes manufacture with ionic liquid, J. Membr. Sci. 490 (2015) 282–293.

DOI: 10.1016/j.memsci.2015.05.009

Google Scholar

[20] W. Mormann, J. Demeter, T. Wagner, Partial silylation of cellulose with predictible degree of silylation-stoichiometric silylation with hexamethyldisilazane in ammonia, Macromol. Chem. Phys. 200 (1999) 693–697.

DOI: 10.1002/(sici)1521-3935(19990401)200:4<693::aid-macp693>3.0.co;2-j

Google Scholar

[21] A. He, D. Liu, H. Tian, Y. Jin, Q. Cheng, J. Song, Improving the yield of trimethylsilyl cellulose by activation of cellulose with ethylenediamine, Cellulose Chem. Technol. 48 (2014) 19-23.

Google Scholar