[1]
T. Gurunathan, M. Smita, N.K. Sanjay, A review of the recent developments in biocomposites based on natural fibres and their application perspectives, Compos. Part A. Appl. S. 77 (2015) 1-25.
Google Scholar
[2]
M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Chemical treatments on plant-based natural fiber reinforced polymer composites: A review, Compos. Part B. Eng. 43 (2012) 2883-2892.
DOI: 10.1016/j.compositesb.2012.04.053
Google Scholar
[3]
M. Jawaid, H.P.S. Abdul Khalil, Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review, Carbohyd. Polym. 86 (2011) 1-18.
DOI: 10.1016/j.carbpol.2011.04.043
Google Scholar
[4]
S. Tanpichai, S. Witayakran, All-cellulose composites from pineapple leaf microfibers: structural, thermal, and mechanical properties, Polym. Composite. 39 (2016) 895-903.
DOI: 10.1002/pc.24015
Google Scholar
[5]
Z. Belouadah, A. Ati, M. Rokbi, Characterization of new natural cellulose fiber from Lygeum spartum L, Carbohyd. Polym. 134 (2015) 429-437.
DOI: 10.1016/j.carbpol.2015.08.024
Google Scholar
[6]
S. Mishra, A.K. Mohanty, L.T. Drzal, M. Misra, G. Hinrichsen, A review on pineapple leaf fibers, sisal fibers and their biocomposites, Macromol. Mater. Eng. 289 (2004) 955-974.
DOI: 10.1002/mame.200400132
Google Scholar
[7]
N. Kengkhetkit, T. Amornsakchai, Utilization of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber, Ind. Crop. Prod. 40 (2012) 55-61.
DOI: 10.1016/j.indcrop.2012.02.037
Google Scholar
[8]
N. Kengkhetkit, T. Amornsakchai, A new approach to Greening, plastic composites using pineapple leaf waste for performance and cost effectiveness, Mater. Design. 55 (2014) 292-299.
DOI: 10.1016/j.matdes.2013.10.005
Google Scholar
[9]
U. Wisittanawat, S. Thanawan, T. Amornsakchai, Mechanical properties of highly aligned short pineapple leaf fiber reinforced – nitrile rubber composite: Effect of fiber content and bonding agent, Polym. Test. 35 (2014) 20-27.
DOI: 10.1016/j.polymertesting.2014.02.003
Google Scholar
[10]
U. Wisittanawat, S. Thanawan, T. Amornsakchai, Remarkable improvement of failure strain of preferentially aligned short pineapple leaf fiber reinforced nitrile rubber composites with silica hybridization. Polym. Test. 38 (2014) 91-99.
DOI: 10.1016/j.polymertesting.2014.07.006
Google Scholar
[11]
K. Yantaboot, T. Amornsakchai, Effect of mastication time on the low strain properties of short pineapple leaf fiber reinforced natural rubber composites. Polym. Test. 57 (2017) 31-37.
DOI: 10.1016/j.polymertesting.2016.11.006
Google Scholar
[12]
K. Prukkaewkanjana, S. Thanawan, T. Amornsakchai, High performance hybrid reinforcement of nitrile rubber using short pineapple leaf fiber and carbon black. Polym. Test. 45 (2015) 76-82.
DOI: 10.1016/j.polymertesting.2015.05.004
Google Scholar
[13]
N. Hariwongsanupab, S. Thanawan. T. Amornsakchai, Improving the mechanical properties of short pineapple leaf fiber reinforced natural rubber by blending with acrylonitrile butadiene rubber. Polym. Test. 57 (2017) 94-100.
DOI: 10.1016/j.polymertesting.2016.11.019
Google Scholar
[14]
C. Wortmann, P. Lindner, F. Dettmer, F. Steiner, T. Scheper, Mastication behavior of cis-1,4-polyisoprene as a model for natural rubber, J. Appl. Polym. Sci. 131 (2014) 39989.
DOI: 10.1002/app.39989
Google Scholar
[15]
R.G. Raj, B.V. Kokta, Compounding of Cellulose Fibers with Polypropylene: Effect of Fiber Treatment on Dispersion in the Polymer Matrix, J. Appl. Polym. Sci. 38 (1989) 1987-1996.
DOI: 10.1002/app.1989.070381103
Google Scholar