[1]
S.C. Bolyard and D.R. Reinhart, Application of landfill treatment approaches for stabilization of municipal solid waste, Waste Management. 55 (2016) 22-30.
DOI: 10.1016/j.wasman.2016.01.024
Google Scholar
[2]
X. Lu, L. Tang, L. Wang, J. Zhao, D. Li, Z. Wu and P. Xiao, Morphology and properties of bio-based poly (lactic acid)/highdensity polyethylene blends and their glass fiber reinforced composites, Polym Test. 54 (2016) 90-97.
DOI: 10.1016/j.polymertesting.2016.06.025
Google Scholar
[3]
L. Liu, J. Yu, L. Cheng and X. Yang, Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre, Polym. Deg. Stab. 94 (2009) 90-94.
DOI: 10.1016/j.polymdegradstab.2008.10.013
Google Scholar
[4]
K. Oksman, M. Skrifvars, and J.F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Compos. Sci. Technol. 63 (2003) 1317-1324.
DOI: 10.1016/s0266-3538(03)00103-9
Google Scholar
[5]
I. Armentano, N. Bitinis, E. Fortunati, S. Mattioli, N. Rescignano, R. Verdejo, M.A. Lopez-Manchado, J.M. Kenny, Multifunctional nanostructured PLA materials for packaging and tissue engineering, Prog. Polym. Sci. 38 (2013) 1720-1747.
DOI: 10.1016/j.progpolymsci.2013.05.010
Google Scholar
[6]
M. Jonoobi, J. Harun, A.P. Mathew, and K. Oksman, Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion, Compos. Sci. Technol. 70 (2010) 1742-1747.
DOI: 10.1016/j.compscitech.2010.07.005
Google Scholar
[7]
H. Yang, S. Zhu, N. Pan, Studying the mechanisms of titanium dioxide asultraviolet-Blocking additive for films and fabrics by an improved scheme, J.Appl. Polym. Sci. 92 (2004) 3201-3210.
DOI: 10.1002/app.20327
Google Scholar
[8]
A. Ammala, A.J. Hill, P. Meakin, S.J. Pas and T.W. Turney, Degradation studies of polyolefins incorporating transparent nanoparticulate zinc oxide UV stabilizers, J. Nanopart. Res. 4 (2002) 167-174.
Google Scholar
[9]
V.L. Finkenstadt and B. Tisserat, Poly(lactic acid) and Osage Orange wood fiber composites for agricultural mulch films, Industrial Crops and Products. 31 (2010) 316-320.
DOI: 10.1016/j.indcrop.2009.11.012
Google Scholar
[10]
W.Y. Jang, B.Y. Shin, T.J. Lee and R. Narayan, Thermal Properties and Morphology of Biodegradable PLA/Starch Compatibilized Blends, J. Ind. Eng. Chem. 13 (2007) 457-464.
Google Scholar
[11]
L. Suryanegara, A.N. Nakagaito and H. Yano, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, Compos. Sci. Technol. 69 (2009) 1187-1192.
DOI: 10.1016/j.compscitech.2009.02.022
Google Scholar
[12]
L.F. Ballesteros, J.A. Teixeira, and S.I. Mussatto, Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin, Food Bioprocess Technol. 7 (2014) 3493-3503.
DOI: 10.1007/s11947-014-1349-z
Google Scholar
[13]
S.I. Mussatto, E.M.S. Machado, S. Martins, and J.A. Teixeira, Production, Composition, and Application of Coffee and Its Industrial Residues, Food Bioprocess Technol. 4 (2011) 661-672.
DOI: 10.1007/s11947-011-0565-z
Google Scholar
[14]
D. García-García, A. Carbonell, M.D. Samper, D. García-Sanoguera, and R. Balart, Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder,, Composites Part B. 78 (2015) 256-265.
DOI: 10.1016/j.compositesb.2015.03.080
Google Scholar
[15]
W. Chin-San, Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability, Polym. Deg. Stab. 121(2015)51-59.
DOI: 10.1016/j.polymdegradstab.2015.08.011
Google Scholar
[16]
N.S. Caetano, V.F.M. Silva, A.C. Melo, A.A. Martins and T.M. Mata, Spent coffee grounds for biodiesel production and other applications, Clean Techn Environ Policy. 16 (2014) 1423-1430.
DOI: 10.1007/s10098-014-0773-0
Google Scholar
[17]
Z. Al-Hamamre, S. Foerster, F. Hartmann, M. Kröger, and M. Kaltschmitt, Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing, Fuel. 96 (2012) 70-76.
DOI: 10.1016/j.fuel.2012.01.023
Google Scholar
[18]
R. Auras, B. Harte and S. Selke, An Overview of Polylactides as Packaging Materials, Macromol. Biosci. 4 (2004) 835-864.
DOI: 10.1002/mabi.200400043
Google Scholar
[19]
M. Narayanana, S. Loganathanb, R.B. Valapac, S. Thomasb and T.O. Varghese, UV protective poly(lactic acid)/rosin films for sustainable packaging, Int. J. Biol. Macromol. 99 (2017) 37-45.
DOI: 10.1016/j.ijbiomac.2017.01.152
Google Scholar