[1]
M. Masoomi, A.A. Katbab, H. Nazockdast, Reduction of noise from disc brake system using composite friction materials containing thermoplastic elastomers, Appl. Compos. Mater. 13 (2006) 305-319.
DOI: 10.1007/s10443-006-9018-7
Google Scholar
[2]
H. Öktem, I. Uygur, M. Çevik, Design, construction and performance of a novel brake pad friction tester, Measurement. 115 (2018) 299-305.
DOI: 10.1016/j.measurement.2017.10.058
Google Scholar
[3]
D. Aleksendrić, A. Senatore, Optimization of manufacturing process effects on brake friction material wear, J. Compos. Mater. 46 (2012) 2777-2791.
DOI: 10.1177/0021998311432489
Google Scholar
[4]
S. Oberst, J.C.S. Lai, Statistical analysis of brake squeal noise, J. Sound Vib. 330 (2011) 2978-2994.
DOI: 10.1016/j.jsv.2010.12.021
Google Scholar
[5]
Y.C. Kim, M.H. Cho, S.J. Kim, H. jang, The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials, Wear. 264 (2008) 204-210.
DOI: 10.1016/j.wear.2007.03.004
Google Scholar
[6]
M. Makrahy, N. Ghazaly, A. Moaaz, Effect of compressibility of brake friction materials on vibration occurrance, Int. J. Transp. Veh. Eng. 11 (2017) 1782-1785.
Google Scholar
[7]
U.S. Hong, S.L. Jung, K.H. Cho, M.H. Cho, S.J. Kim, H. Jang, Wear mechanism of multiphase friction materials with different phenolic resin matrices, Wear. 266 (2009) 739-744.
DOI: 10.1016/j.wear.2008.08.008
Google Scholar
[8]
P.V. Gurunath, J. Bijwe, Potential exploration of novel green resins as binders for NAO friction composites in severe operating conditions, Wear. 267 (2009) 789-796.
DOI: 10.1016/j.wear.2009.02.012
Google Scholar
[9]
R. Ertan, N. Yavuz, An experimental study on the effect of manufacturing parameters on the tribological properties of brake lining materials, Wear. 268 (2010) 1524-1532.
DOI: 10.1016/j.wear.2010.02.026
Google Scholar
[10]
R.C. Dante, Handbook of friction Materials and their Applications, first ed., Woodhead, Cambridge, (2015).
Google Scholar
[11]
C. Pupin, A. Ross, C. Dubois, J.C. Rietsch, E. Ruiz, Predicting porosity formation in phenolic resins for RTM manufacturing: the porosity map, Composites part A. 100 (2017) 294-304.
DOI: 10.1016/j.compositesa.2017.05.023
Google Scholar
[12]
S. Das, S. Mishra, Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissma shell with desirability approach, J. Environ. Chem. Eng. 5 (2017) 588-600.
DOI: 10.1016/j.jece.2016.12.034
Google Scholar
[13]
A. Ahmadi, A. Heidarzadeh, A.R. Mokhtari, E. Darezereshki, H.A. Harouni, Optimization of heavy metal removal from aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using response, J. Geochem. Explor. 147 (2014) 151-158.
DOI: 10.1016/j.gexplo.2014.10.005
Google Scholar
[14]
S.J. Kim, K.S. Kim, H. Jung, Optimization of manufacturing parameters for a brake lining using Taguchi method, J. Mater. Process. Tech. 136 (2003) 202-208.
DOI: 10.1016/s0924-0136(03)00159-6
Google Scholar
[15]
R. Canali, A. Tamagna, Evaluation of properties disc and pad materials and their relation with disc brake noise – an experiment investigation, SAE Technical paper 2002-01-2604, 2002, https://doi.org/10.4271/2002-01-2604.
DOI: 10.4271/2002-01-2604
Google Scholar
[16]
United Nation, Agreement concerning the adoption of uniform technical prescriptions for wheeled vehicles, equipment and parts which can be fitted and/or be used on wheeled vehicles and the conditions for reciprocal recognition of approvals granted on the basis of these prescriptions, Addendum 89: Regulation No. 90, 2012, p.15.
DOI: 10.18356/71ac9a5a-en
Google Scholar