Production and Characterization of Bacterial Cellulose from Rice Washing Drainage (RWD) by Komagataeibacter nataicola Li1

Article Preview

Abstract:

Bacterial cellulose (BC), produced by some bacteria has received attention because its high purity and robust characteristics enable its use in medicine and industry. This study aimed to screen bacteria capable of producing BC from fruits, and to optimize the BC production in both traditional YE yeast fermentation and Schramm and Hestrin (SH) media. The rice washing drainage without any pretreatment as the sole carbon source in the yeast medium was also investigated for BC production in both static and agitated cultures. The bacterial strain Li1 isolated from apple (Malus pumila) was identified as Komagataeibacter (Gluconacetobacter) nataicola based on 16S rDNA sequence analysis. K. nataicola Li1 cultured in a YE medium produced significantly more BC than that in a SH medium in the static culture. Moreover, the weight yields of dry BC films obtained from rice washing drainage and YE media in the static cultures were not significantly different. However, in the agitated culture, the weight yields of dry BC films were more significant in the YE medium than in rice washing drainage medium. In addition, the structure and properties of BC were determined using SEM, FTIR, DSC and XRD. This study shows that rice washing drainage can be used as the carbon source for BC production by K. nataicola Li1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-37

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Dourado, M. Ryngajllo, M. Jedrzejczak-Krzepkowska, S. Bielecki, M. Gama, Chapter 1 - Taxonomic Review and Microbial Ecology in Bacterial NanoCellulose Fermentation. In Bacterial Nanocellulose, Amsterdam: Elsevier 2016, pp.1-17.

DOI: 10.1016/b978-0-444-63458-0.00001-9

Google Scholar

[2] R. M. J. Brown, Cellulose structure and biosynthesis: What is in store for the 21st century, J. Polym. Sci. 42(3) (2004) 487-495.

DOI: 10.1002/pola.10877

Google Scholar

[3] R. P. Chawla, B. I. Bajaj, A. S. Survase, S. R. Singhal, Microbial Cellulose: Fermentative Production and Applications, Fermentative Production of Microbial Cellulose, Food Technol. Biotechnol. 47(2) (2009) 107–124.

Google Scholar

[4] F. Esa, S. M. Tasirin, N. A. Rahman, Overview of Bacterial Cellulose Production and Application, Agric. Agric. Sci. Proc. 2 (2014) 113-119.

Google Scholar

[5] S.-P. Lin, I. Loira Calvar, J. M. Catchmark, J.-R. Liu, A. Demirci, K.-C. Cheng, Biosynthesis, production and applications of bacterial cellulose, Cellulose. 20(5) (2013) 2191-2219.

DOI: 10.1007/s10570-013-9994-3

Google Scholar

[6] S.Tanskul, K. Amornthatree, N. Jaturonlak, A new cellulose-producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions, Carbohyd. Polym. 92(1) (2013) 421-428.

DOI: 10.1016/j.carbpol.2012.09.017

Google Scholar

[7] X. Zeng, D. P. Small, W. Wan, Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup, Carbohyd. Polym. 85(3) (2011) 506-513.

DOI: 10.1016/j.carbpol.2011.02.034

Google Scholar

[8] D.Klemm, D. Schumann, U. Udhardt, S. Marsch, Bacterial synthesized cellulose — artificial blood vessels for microsurgery, Prog. Polym. Sci. 26(9) (2001) 1561-1603.

DOI: 10.1016/s0079-6700(01)00021-1

Google Scholar

[9] H. Jiang, Y. Ling Wang, S. Ru Jia, Y. Huang, F. he, Y. Zao Wan, Preparation and Characterization of Hydroxyapatite/Bacterial Cellulose Nanocomposite Scaffolds for Bone Tissue Engineering, (2007) Vol. 330-332.

DOI: 10.4028/www.scientific.net/kem.330-332.923

Google Scholar

[10] A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D.L. Kaplan, M. Brittberg, P. Gatenholm, Bacterial cellulose as a potential scaffold for tissue engineering of cartilage, Biomaterials. 26(4) (2005) 419-431.

DOI: 10.1016/j.biomaterials.2004.02.049

Google Scholar

[11] J. D. Fontana, A. M. De Souza, C. K. Fontana, I. L. Torriani, J. C. Moreschi, B. J. Gallotti, S. J. De Souza, G. P. Narcisco, J. A. Bichara, L. F. X. Farah, Acetobacter cellulose pellicle as a temporary skin substitute, Appl. Biochem. Biotech. 24(1) (1990) 253-264.

DOI: 10.1007/bf02920250

Google Scholar

[12] B. R. Evans, H. M. O'Neill, V. P. Malyvanh, I. Lee, J. Woodward, Palladium-bacterial cellulose membranes for fuel cells, Biosens. Bioelectron. 18(7) (2003) 917-923.

DOI: 10.1016/s0956-5663(02)00212-9

Google Scholar

[13] A. N. Nakagaito, M. Nogi, H. Yano, Displays from Transparent Films of Natural Nanofibers, MRS Bulletin. 35(3) (2010) 214-218.

DOI: 10.1557/mrs2010.654

Google Scholar

[14] J. Shah, R. M., Jr. Brown, Towards electronic paper displays made from microbial cellulose, Appl. Biochem. Biotech. 66(4) (2005) 352-355.

DOI: 10.1007/s00253-004-1756-6

Google Scholar

[15] M. Jedrzejczak-Krzepkowska, K. Kubiak, K. Ludwicka, S. Bielecki, Chapter 2 - Bacterial NanoCellulose Synthesis, Recent Findings. In Bacterial Nanocellulose, Amsterdam: Elsevier. 2016, pp.19-46.

DOI: 10.1016/b978-0-444-63458-0.00002-0

Google Scholar

[16] D. Lin, P. Lopez-Sanchez, R. Li, Z. Li, Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source, Bioresource Technol. 151 (2014) 113-119.

DOI: 10.1016/j.biortech.2013.10.052

Google Scholar

[7] C. Castro, R. Zuluaga, J.-L. Putaux, G. Caro, I. Mondragon, P. Gañán, Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes, Carbohyd. Polym. 84(1) (2011) 96-102.

DOI: 10.1016/j.carbpol.2010.10.072

Google Scholar

[18] S.-Y. Kim, J.-N. Kim, Y.-J. Wee, D.-H. Park, H.-W. Ryu, Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar, Appl. Biochem. Biotech. 131(1) (2006) 705.

DOI: 10.1385/abab:131:1:705

Google Scholar

[19] S. M. Yim, J. E. Song, H. R. Kim, Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar, Process Biochem. 59 (2017) 26-36.

DOI: 10.1016/j.procbio.2016.07.001

Google Scholar

[20] F. Hong, Y. X. Zhu, G. Yang, X. X. Yang, Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose, J. Chem. Technol. Biot. 86(5) (2011) 675-680.

DOI: 10.1002/jctb.2567

Google Scholar

[21] F. Hong, X. Guo, S. Zhang, S.-f. Han, G. Yang, L. J. Jönsson, Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment, Bioresource Technol. 104 (2012) 503-508.

DOI: 10.1016/j.biortech.2011.11.028

Google Scholar

[22] C. Huang, H. J. Guo, L. Xiong, B. Wang, S. L. Shi, X. F. Chen, X. Q. Lin, C. Wang, J. Luo, X. D. Chen, Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus, Carbohyd. Polym. 136 (2016) 198-202.

DOI: 10.1016/j.carbpol.2015.09.043

Google Scholar

[23] Z. Li, L. Wang, J. Hua, S. Jia, J. Zhang, H. Liu, Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum, Carbohyd. Polym. 120 (2015) 115-119.

DOI: 10.1016/j.carbpol.2014.11.061

Google Scholar

[24] X. Fan, Y. Gao, W. He, H. Hu, M. Tian, K. Wang, S. Pan, Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus, Carbohyd. Polym. 151 (2016) 1068-1072.

DOI: 10.1016/j.carbpol.2016.06.062

Google Scholar

[25] H. Toyosaki, T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida, F. Yoshinaga, Screening of Bacterial Cellulose-producing Acetobacter Strains Suitable for Agitated Culture, Biosci. Biotech. Bioch. 59(8) (2014) 1498-1502.

DOI: 10.1271/bbb.59.1498

Google Scholar

[26] G. Joseph, G. Rowe, A. Margaritis, W. Wan, Effects of polyacrylamide‐co‐acrylic acid on cellulose production by Acetobacter xylinum, (2003) Vol. 78.

DOI: 10.1002/jctb.869

Google Scholar

[27] P. Sudying, P. Jaturapiree, (2018). Bacterial cellulose production by Komagataeibacter nataicola using water from washing rice as substrate and optimization of culture conditions Paper presented at the Pure and Applied Chemistry International Conference 2018 (PACCON 2018), Thailand.

DOI: 10.4028/www.scientific.net/kem.824.30

Google Scholar

[28] P. Carreira, J. A. S. Mendes, E. Trovatti, L. S. Serafim, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, Utilization of residues from agro-forest industries in the production of high value bacterial cellulose, Bioresource Technol. 102(15) (2011) 7354-7360.

DOI: 10.1016/j.biortech.2011.04.081

Google Scholar

[29] N. Sunagawa, K. Tajima, M. Hosoda, S. Kawano, R. Kose, Y. Satoh, M. Yao, T. Dairi, Cellulose production by Enterobacter sp. CJF-002 and identification of genes for cellulose biosynthesis, Cellulose.19(6) (2012) 1989-2001.

DOI: 10.1007/s10570-012-9777-2

Google Scholar

[30] D. Giron, Applications of Thermal Analysis and Coupled Techniques in Pharmaceutical Industry, J. Therm. Anal. Calorim. 68(2) (2002) 335-357.

Google Scholar