[1]
F. Dourado, M. Ryngajllo, M. Jedrzejczak-Krzepkowska, S. Bielecki, M. Gama, Chapter 1 - Taxonomic Review and Microbial Ecology in Bacterial NanoCellulose Fermentation. In Bacterial Nanocellulose, Amsterdam: Elsevier 2016, pp.1-17.
DOI: 10.1016/b978-0-444-63458-0.00001-9
Google Scholar
[2]
R. M. J. Brown, Cellulose structure and biosynthesis: What is in store for the 21st century, J. Polym. Sci. 42(3) (2004) 487-495.
DOI: 10.1002/pola.10877
Google Scholar
[3]
R. P. Chawla, B. I. Bajaj, A. S. Survase, S. R. Singhal, Microbial Cellulose: Fermentative Production and Applications, Fermentative Production of Microbial Cellulose, Food Technol. Biotechnol. 47(2) (2009) 107–124.
Google Scholar
[4]
F. Esa, S. M. Tasirin, N. A. Rahman, Overview of Bacterial Cellulose Production and Application, Agric. Agric. Sci. Proc. 2 (2014) 113-119.
Google Scholar
[5]
S.-P. Lin, I. Loira Calvar, J. M. Catchmark, J.-R. Liu, A. Demirci, K.-C. Cheng, Biosynthesis, production and applications of bacterial cellulose, Cellulose. 20(5) (2013) 2191-2219.
DOI: 10.1007/s10570-013-9994-3
Google Scholar
[6]
S.Tanskul, K. Amornthatree, N. Jaturonlak, A new cellulose-producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions, Carbohyd. Polym. 92(1) (2013) 421-428.
DOI: 10.1016/j.carbpol.2012.09.017
Google Scholar
[7]
X. Zeng, D. P. Small, W. Wan, Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup, Carbohyd. Polym. 85(3) (2011) 506-513.
DOI: 10.1016/j.carbpol.2011.02.034
Google Scholar
[8]
D.Klemm, D. Schumann, U. Udhardt, S. Marsch, Bacterial synthesized cellulose — artificial blood vessels for microsurgery, Prog. Polym. Sci. 26(9) (2001) 1561-1603.
DOI: 10.1016/s0079-6700(01)00021-1
Google Scholar
[9]
H. Jiang, Y. Ling Wang, S. Ru Jia, Y. Huang, F. he, Y. Zao Wan, Preparation and Characterization of Hydroxyapatite/Bacterial Cellulose Nanocomposite Scaffolds for Bone Tissue Engineering, (2007) Vol. 330-332.
DOI: 10.4028/www.scientific.net/kem.330-332.923
Google Scholar
[10]
A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D.L. Kaplan, M. Brittberg, P. Gatenholm, Bacterial cellulose as a potential scaffold for tissue engineering of cartilage, Biomaterials. 26(4) (2005) 419-431.
DOI: 10.1016/j.biomaterials.2004.02.049
Google Scholar
[11]
J. D. Fontana, A. M. De Souza, C. K. Fontana, I. L. Torriani, J. C. Moreschi, B. J. Gallotti, S. J. De Souza, G. P. Narcisco, J. A. Bichara, L. F. X. Farah, Acetobacter cellulose pellicle as a temporary skin substitute, Appl. Biochem. Biotech. 24(1) (1990) 253-264.
DOI: 10.1007/bf02920250
Google Scholar
[12]
B. R. Evans, H. M. O'Neill, V. P. Malyvanh, I. Lee, J. Woodward, Palladium-bacterial cellulose membranes for fuel cells, Biosens. Bioelectron. 18(7) (2003) 917-923.
DOI: 10.1016/s0956-5663(02)00212-9
Google Scholar
[13]
A. N. Nakagaito, M. Nogi, H. Yano, Displays from Transparent Films of Natural Nanofibers, MRS Bulletin. 35(3) (2010) 214-218.
DOI: 10.1557/mrs2010.654
Google Scholar
[14]
J. Shah, R. M., Jr. Brown, Towards electronic paper displays made from microbial cellulose, Appl. Biochem. Biotech. 66(4) (2005) 352-355.
DOI: 10.1007/s00253-004-1756-6
Google Scholar
[15]
M. Jedrzejczak-Krzepkowska, K. Kubiak, K. Ludwicka, S. Bielecki, Chapter 2 - Bacterial NanoCellulose Synthesis, Recent Findings. In Bacterial Nanocellulose, Amsterdam: Elsevier. 2016, pp.19-46.
DOI: 10.1016/b978-0-444-63458-0.00002-0
Google Scholar
[16]
D. Lin, P. Lopez-Sanchez, R. Li, Z. Li, Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source, Bioresource Technol. 151 (2014) 113-119.
DOI: 10.1016/j.biortech.2013.10.052
Google Scholar
[7]
C. Castro, R. Zuluaga, J.-L. Putaux, G. Caro, I. Mondragon, P. Gañán, Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes, Carbohyd. Polym. 84(1) (2011) 96-102.
DOI: 10.1016/j.carbpol.2010.10.072
Google Scholar
[18]
S.-Y. Kim, J.-N. Kim, Y.-J. Wee, D.-H. Park, H.-W. Ryu, Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar, Appl. Biochem. Biotech. 131(1) (2006) 705.
DOI: 10.1385/abab:131:1:705
Google Scholar
[19]
S. M. Yim, J. E. Song, H. R. Kim, Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar, Process Biochem. 59 (2017) 26-36.
DOI: 10.1016/j.procbio.2016.07.001
Google Scholar
[20]
F. Hong, Y. X. Zhu, G. Yang, X. X. Yang, Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose, J. Chem. Technol. Biot. 86(5) (2011) 675-680.
DOI: 10.1002/jctb.2567
Google Scholar
[21]
F. Hong, X. Guo, S. Zhang, S.-f. Han, G. Yang, L. J. Jönsson, Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment, Bioresource Technol. 104 (2012) 503-508.
DOI: 10.1016/j.biortech.2011.11.028
Google Scholar
[22]
C. Huang, H. J. Guo, L. Xiong, B. Wang, S. L. Shi, X. F. Chen, X. Q. Lin, C. Wang, J. Luo, X. D. Chen, Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus, Carbohyd. Polym. 136 (2016) 198-202.
DOI: 10.1016/j.carbpol.2015.09.043
Google Scholar
[23]
Z. Li, L. Wang, J. Hua, S. Jia, J. Zhang, H. Liu, Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum, Carbohyd. Polym. 120 (2015) 115-119.
DOI: 10.1016/j.carbpol.2014.11.061
Google Scholar
[24]
X. Fan, Y. Gao, W. He, H. Hu, M. Tian, K. Wang, S. Pan, Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus, Carbohyd. Polym. 151 (2016) 1068-1072.
DOI: 10.1016/j.carbpol.2016.06.062
Google Scholar
[25]
H. Toyosaki, T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida, F. Yoshinaga, Screening of Bacterial Cellulose-producing Acetobacter Strains Suitable for Agitated Culture, Biosci. Biotech. Bioch. 59(8) (2014) 1498-1502.
DOI: 10.1271/bbb.59.1498
Google Scholar
[26]
G. Joseph, G. Rowe, A. Margaritis, W. Wan, Effects of polyacrylamide‐co‐acrylic acid on cellulose production by Acetobacter xylinum, (2003) Vol. 78.
DOI: 10.1002/jctb.869
Google Scholar
[27]
P. Sudying, P. Jaturapiree, (2018). Bacterial cellulose production by Komagataeibacter nataicola using water from washing rice as substrate and optimization of culture conditions Paper presented at the Pure and Applied Chemistry International Conference 2018 (PACCON 2018), Thailand.
DOI: 10.4028/www.scientific.net/kem.824.30
Google Scholar
[28]
P. Carreira, J. A. S. Mendes, E. Trovatti, L. S. Serafim, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, Utilization of residues from agro-forest industries in the production of high value bacterial cellulose, Bioresource Technol. 102(15) (2011) 7354-7360.
DOI: 10.1016/j.biortech.2011.04.081
Google Scholar
[29]
N. Sunagawa, K. Tajima, M. Hosoda, S. Kawano, R. Kose, Y. Satoh, M. Yao, T. Dairi, Cellulose production by Enterobacter sp. CJF-002 and identification of genes for cellulose biosynthesis, Cellulose.19(6) (2012) 1989-2001.
DOI: 10.1007/s10570-012-9777-2
Google Scholar
[30]
D. Giron, Applications of Thermal Analysis and Coupled Techniques in Pharmaceutical Industry, J. Therm. Anal. Calorim. 68(2) (2002) 335-357.
Google Scholar