Influence of Acid-Treatment on Waste Lignin for Synthesis of Carbon Nanoparticle

Article Preview

Abstract:

Waste lignin (WL) obtained from paper mills, was studied for its potential application in preparing carbon nanoparticles (CNPs) with high porosity. This was done by impregnation of 0, 5, 10 and 20% concentrations of phosphoric acid under various carbonization temperatures (600, 700, 800 and 900°C). The physicochemical properties of CNPs were characterized through nitrogen sorption, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Fourier transforms infrared spectroscopy (FTIR). Nitrogen sorption revealed that the condition using 10% concentration of phosphoric acid treatment at a carbonization temperature of 700°C formed carbon nanoparticles with a highly porous structure (Surface area 27.65 m2/g and pore volume 0.07 cm3/g). Additionally, in order to high surface area, porosity and concentrated carbon nanoparticle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-7

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Venkata Mohan, J. Karthikeyan, Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environ. Pollut. 97 (1997) 183 - 187.

DOI: 10.1016/s0269-7491(97)00025-0

Google Scholar

[2] Z. Qinglin, C. Karl T., Adsorption of organic pollutants from effluents of a Kraft pulp mill on activated carbon and polymer resin. Adv. Environ. Res. 3 (2001) 251 - 258.

DOI: 10.1016/s1093-0191(00)00059-9

Google Scholar

[3] M. Dinesh, P. Charles U. Jr., and S. Philip H., Single, binary and multicomponent adsorption of copper and cadmium from aqueous solutions on Kraft lignin—A biosorbent. J. Colloid Interf. Sci. 297(2) (2006) 489 - 504.

DOI: 10.1016/j.jcis.2005.11.023

Google Scholar

[4] J. Lora, Industrial commercial lignins: Sources, properties and applications. in Monomers, Polymers and Composites from Renewable Resources, edited by Belgacem, M., and Gandini, A. (eds.), Elsevier, Oxford, UK (2008) 225 – 241.

DOI: 10.1016/b978-0-08-045316-3.00010-7

Google Scholar

[5] R. Aravamuthan, W.Y. Chen, K. Zargarian, and G. C. April, Ethanol from southern hardwoods: the role of presulphonation in the acid hydrolysis process. Biotechnology and Bioengineering Symposium, John Wiley & Sons (1986) 115 – 127.

DOI: 10.1080/00986448808940608

Google Scholar

[6] R.J.A. Gosselink, E. de Jong, B. Guran, and A. Abächerli, Coordination network for lignin-standardisation. production and applications adapted to market requirements (EUROLIGNIN). Ind. Crops Prod. 20 (2004) 121 - 129.

DOI: 10.1016/j.indcrop.2004.04.015

Google Scholar

[7] A.L. Macfarlane, R. Prestidge, M.M. Farid, and J.J.J. Chen, Dissolved air flotation: A novel approach to recovery of organosolv lignin. Chemical Engineering Journal 148(1) (2009) 15 - 19.

DOI: 10.1016/j.cej.2008.07.036

Google Scholar

[8] B. Krzysztof, J. Krzysztof, KOH activated lignin-based nanostructured carbon exhibiting high hydrogen electrosorption. Carbon 46 (2008) 1948 - (1956).

DOI: 10.1016/j.carbon.2008.08.005

Google Scholar

[9] B. Krzysztof, J. Dawid, J. Krzysztof, Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials. Carbon 50 (2012) 5017 - 5026.

DOI: 10.1016/j.carbon.2012.06.030

Google Scholar

[10] T. Nagy L., H. Ming, I. Shinsuke, S. Hiroaki, B. Alexis A., I. Masataka, A. Katsuhiko, S. Yoshio, and Y. Yusuke, Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10 (2014) 2096 - 2107.

DOI: 10.1002/smll.201302910

Google Scholar

[11] C. Binling, M. Guiping, K. Dali, Z. Yanqiu, and X. Yongde, Atomically homogeneous dispersed ZnO/N-doped nanoporous carbon composites with enhanced CO2 uptake capacities and high efficient organic pollutants removal from water. Carbon 95 (2015) 113 - 124.

DOI: 10.1016/j.carbon.2015.08.015

Google Scholar

[12] P. Maryam, Q. Ali, R. Ramakrishnan, and F. Henry C., On the effects of confinement within a catalyst consisting of platinum embedded within nanoporous carbon for the hydrogenation of alkenes. Carbon 66 (2014) 459 - 466.

DOI: 10.1016/j.carbon.2013.09.022

Google Scholar

[13] V. Aleksey N., G. Leonid V., P. Vladimir A., Z. Eugene, C. Jengshiou, and K. Johannes G., Functionalized nanoporous carbon as a catalyst for Suzuki coupling reactions. Microporous and Mesoporous Mater. 101 (2007) 342 - 347.

DOI: 10.1016/j.micromeso.2006.11.026

Google Scholar

[14] L. Jung Joon, H. Sangjin, K. Heeyeon, K. Jae Hyun, H. Taeghwan, M. Sang Heup, Performance of CoMoS catalysts supported on nanoporous carbon in the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Catalysis Today 86 (2003) 141 - 149.

DOI: 10.1016/s0920-5861(03)00408-5

Google Scholar

[15] Y. Zhuxian, X. Yongde, and M. Robert, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J. Am. Chem. Soc. 129 (2007) 1673 - 1679.

DOI: 10.1021/ja067149g

Google Scholar

[16] H. Sangjin, K. Sukjae, L. Hacgyu, C. Wonyong, P. Hyunwoong, Y. Jeyong, and H. Taeghwan, New nanoporous carbon materials with high adsorption capacity and rapid adsorption kinetics for removing humic acids. Microporous Mesoporous Mater. 58 (2003) 131 - 135.

DOI: 10.1016/s1387-1811(02)00611-x

Google Scholar

[17] J.P. Ruparelia, S.P. Duttagupta, A.K. Chatterjee, and S. Mukherji, Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232 (2008) 145 - 156.

DOI: 10.1016/j.desal.2007.08.023

Google Scholar

[18] L. Krisztina, T. Etelka, and K. Péter, Surface chemistry of nanoporous carbon and the effect of pH on adsorption from aqueous phenol and 2,3,4-trichlorophenol solutions. Colloids Surfaces a Physicochem. Eng. Aspects 230 (2003) 13 - 22.

DOI: 10.1016/j.colsurfa.2003.09.009

Google Scholar

[19] B. Xiao, K. M. Thomas, Competitive adsorption of aqueous metal ions on an oxidized nanoporous activated carbon. Langmuir 20 (2004) 4566 - 4578.

DOI: 10.1021/la049712j

Google Scholar

[20] A. Yazdankhah, S.E. Moradi, S. Amirmahmoodi, M. Abbasian, and S. Esmaeily Shoja, Enhanced sorption of cadmium ion on highly ordered nanoporous carbon by using different surfactant modification. Microporous Mesoporous Mater. 133 (2010) 45 - 53.

DOI: 10.1016/j.micromeso.2010.04.012

Google Scholar

[21] G. Fuat, S. Hasan, S. Gülbahar Akkaya, and K. Filiz, Elimination of anionic dye by using nanoporous carbon prepared from an industrial biowaste. J. Mol. Liq. 194 (2014) 130 - 140.

DOI: 10.1016/j.molliq.2014.01.018

Google Scholar

[22] L. Bo, S. Hiroshi, J. Hailong, Z. Xinbo, and X. Qiang, Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48 (2010) 456 - 463.

DOI: 10.1016/j.carbon.2009.09.061

Google Scholar

[23] C. Watcharop, H. Ming, W. Hongjing, H. Hou-Sheng, F. Taketoshi, W. Kevin C.-W., C. Lin-Chi, Y. Yusuke and A. Katsuhiko, Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem. Commun. 48 (2012) 7259 - 7261.

DOI: 10.1039/c2cc33433j

Google Scholar

[24] S. Rahul R., K. Yuichiro, T. Nagy L., H. Soo Min, S. Ziqi, D. Shi Xue, K. Jung Ho, and Y. Yusuke, Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A 2 (2014) 19848 - 19854.

DOI: 10.1039/c4ta04277h

Google Scholar

[25] Suhas, P.J.M. Carrott, and M.M.L. Ribeiro Carrott, Lignin - from natural adsorbent to activated carbon: A review. Bioresource Technology 98 (2007) 2301 - 2312.

DOI: 10.1016/j.biortech.2006.08.008

Google Scholar

[26] K.K. Pandey, A.J. Pitman, FTIR Studies of the Changes in Wood Chemistry Following Decay by Brown-rot and White-rot Fungi. International Biodeterioration & Biodegradation 52 (2003) 151 - 160.

DOI: 10.1016/s0964-8305(03)00052-0

Google Scholar

[27] J. Z. Mao, L. Zhang, and F. Xu, Fractional and Structural Characterization of Alkaline Lignins From Carex Meyeriana Kunth. Cellulose chemtechnol 46 (3-4) (2012) 193 - 205.

Google Scholar

[28] K. Minu, K. Kurian Jiby, and V.V.N. Kishore, Isolation and Purification of Lignin and Silica from the Black Liquor Generated During the Production of Bioethanol from Rice Straw. Biomass and Bioenergy 39 (2012) 210 – 217.

DOI: 10.1016/j.biombioe.2012.01.007

Google Scholar

[29] S. Javad, K. Sally, D. S. Rosa, L. Alcides, and S. Mohini, Thermal Characteristics of Lignin Residue from Industrial Processes. BioResources 9(1) (2014) 725 – 737.

Google Scholar