[1]
F.H. Isikgor, C.R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers, Polym. Chem. 6 (2015) 4497-4559.
DOI: 10.1039/c5py00263j
Google Scholar
[2]
N. Mohamad Nor, L.C. Lau, K.T. Lee, A.E. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control–a review, J. Environ. Chem. Manage. 1 (2013) 658-666.
DOI: 10.1016/j.jece.2013.09.017
Google Scholar
[3]
M. Borghei, J. Lehtonen, L. Liu, O.J. Rojas, Advanced biomass–derived electrocatalysts for the oxygen reduction reaction, Adv. Mater. 30 (2018) 1703691.
DOI: 10.1002/adma.201703691
Google Scholar
[4]
J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang, Biomass derived carbon for energy storage devices, J. Mater. Chem. A 5 (2017) 2411-2428.
DOI: 10.1039/c6ta08742f
Google Scholar
[5]
L. Wang, X. Hu, Recent advances in porous carbon materials for electrochemical energy storage, Chem. Asian J. 13 (2018) 1518-1529.
DOI: 10.1002/asia.201800553
Google Scholar
[6]
Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Recent advancement of nanostructured carbon for energy applications, Chem. Rev. 115 (2015) 5159-5223.
DOI: 10.1021/cr5006217
Google Scholar
[7]
L. Estevez, D. Barpaga, J. Zheng, S. Sabale, R. L. Patel, J.-G. Zhang, B.P. McGrail, R.K. Motkuri, Hierarchically porous carbon materials for CO2 capture: the role of pore structure, Ind. Eng. Chem. Res. 57 (2018) 1262-1268.
DOI: 10.1021/acs.iecr.7b03879
Google Scholar
[8]
G. Srinivas, V. Krugleviciute, Z.-X. Guo, T. Yildrim, Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume, Energy Environ. Sci. 7 (2014) 335-342.
DOI: 10.1039/c3ee42918k
Google Scholar
[9]
A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpää, An overview of the modification methods of activated carbon for its water treatment applications, Chem. Eng. J. 219 (2013) 499-511.
DOI: 10.1016/j.cej.2012.12.038
Google Scholar
[10]
S. K. Hoekman, A. Borch, C. Robbins, Hydrothermal carbonization (HTC) of lignocellulose biomass, Energy Fuel 25 (2011) 1802-1810.
DOI: 10.1021/ef101745n
Google Scholar
[11]
B. Hu, K. Wang, L. Wu, S.-H. Yu, M. Antonietti, M.-M. Titirici, Engineering carbon materials from the hydrothermal carbonization process of biomass, Adv. Mater. 22 (2010) 813-828.
DOI: 10.1002/adma.200902812
Google Scholar
[12]
K.K. Lee, E. Björkman, D. Morin, M. Lilliestråle, F. Björefors, A.M. Andersson, N. Hedin, Effects of hydrothermal carbonization conditions on the textural and electrical properties of activated carbons, Carbon 107 (2016) 619-621.
DOI: 10.1016/j.carbon.2016.06.040
Google Scholar
[13]
K. Guntagerng, G. Panomsuwan, A. Eiad-ua, Fundamental study of carbon materials derived from empty fruit bunch via hydrothermal carbonization, Walailak J. Sci. Technol. 15 (2018) 779-786.
DOI: 10.48048/wjst.2018.5964
Google Scholar
[14]
S. Nizamuddin, H.A. Baloch, G.J. Griffin, N.M. Mubarak, A.W. Bhutto, R. Abro, S.A. Mazari, B.S. Ali, An overview of effect of process parameter on hydrothermal carbonization of biomass, Renew. Sustain. Energy Rev. 73 (2017) 1289-1299.
DOI: 10.1016/j.rser.2016.12.122
Google Scholar
[15]
T. Kubilay, K. Selhan, B. Sema. A review of hydrothermal biomass processing. Renew. Sust. Energy Rev. 40 (2014) 673-687.
Google Scholar
[16]
W. Lili, G. Yupeng, Z. Yanchao, L. Ying, Q. Yuning, R. Chunguang, M. Xiaoyu, W. Zichen. A new route for preparation of hydrochars from rice husk. Biores. Technol. 101 (2010) 9807-9810.
Google Scholar
[17]
F. Fan, Z. Yang, H. Li, Z. Shi, H. Kan, Preparation and properties of hydrochars from macadamia nut shell via hydrothermal carbonization, R. Soc. Open. Sci. 5 (2018) 181126.
DOI: 10.1098/rsos.181126
Google Scholar
[18]
A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61 (2000) 14095.
DOI: 10.1103/physrevb.61.14095
Google Scholar
[19]
A.C. Ferri, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Phil. Trans. R. Soc. Lond. A 362 (2004) 2477-2512.
Google Scholar
[20]
K.S.W. Sing, Reporting physisorption data for gas/solid systems, Pure Appl. Chem. 54 (1982) 2201-2218.
Google Scholar