Transformation of Waste Marigold Flowers into Porous Carbons via Hydrothermal Carbonization

Article Preview

Abstract:

Vast quantities of marigold flowers are often discarded as waste at sacred places and temples after religious ceremonies in Thailand. This has motivated us to examine the utilization of waste marigold flowers as a precursor for the synthesis of porous carbons by hydrothermal carbonization (HTC) and pyrolysis. Waste marigold flowers were hydrothermally treated at 180 °C for 2, 12, and 24 h. The resultant hydrochars were subsequently pyrolyzed at 800 °C under argon (Ar) atmosphere. Based on X-ray diffraction and Raman spectroscopy analyses, the samples exhibited an amorphous phase regardless of HTC time. With increasing HTC time, the marigold surface became rougher and more ruptured. This resulted in the development of a porous structure, thereby increasing surface area. The specific surface area of carbon samples increased from 118 to 281 m2/g with HTC increasing from 2 to 24 h, respectively. Increase of specific surface area mainly resulted from the development of a microporous structure at longer HTC times. Our results offer guidelines to control surface area and porosity through the adjustment of HTC conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-29

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.H. Isikgor, C.R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers, Polym. Chem. 6 (2015) 4497-4559.

DOI: 10.1039/c5py00263j

Google Scholar

[2] N. Mohamad Nor, L.C. Lau, K.T. Lee, A.E. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control–a review, J. Environ. Chem. Manage. 1 (2013) 658-666.

DOI: 10.1016/j.jece.2013.09.017

Google Scholar

[3] M. Borghei, J. Lehtonen, L. Liu, O.J. Rojas, Advanced biomass–derived electrocatalysts for the oxygen reduction reaction, Adv. Mater. 30 (2018) 1703691.

DOI: 10.1002/adma.201703691

Google Scholar

[4] J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang, Biomass derived carbon for energy storage devices, J. Mater. Chem. A 5 (2017) 2411-2428.

DOI: 10.1039/c6ta08742f

Google Scholar

[5] L. Wang, X. Hu, Recent advances in porous carbon materials for electrochemical energy storage, Chem. Asian J. 13 (2018) 1518-1529.

DOI: 10.1002/asia.201800553

Google Scholar

[6] Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Recent advancement of nanostructured carbon for energy applications, Chem. Rev. 115 (2015) 5159-5223.

DOI: 10.1021/cr5006217

Google Scholar

[7] L. Estevez, D. Barpaga, J. Zheng, S. Sabale, R. L. Patel, J.-G. Zhang, B.P. McGrail, R.K. Motkuri, Hierarchically porous carbon materials for CO2 capture: the role of pore structure, Ind. Eng. Chem. Res. 57 (2018) 1262-1268.

DOI: 10.1021/acs.iecr.7b03879

Google Scholar

[8] G. Srinivas, V. Krugleviciute, Z.-X. Guo, T. Yildrim, Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume, Energy Environ. Sci. 7 (2014) 335-342.

DOI: 10.1039/c3ee42918k

Google Scholar

[9] A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpää, An overview of the modification methods of activated carbon for its water treatment applications, Chem. Eng. J. 219 (2013) 499-511.

DOI: 10.1016/j.cej.2012.12.038

Google Scholar

[10] S. K. Hoekman, A. Borch, C. Robbins, Hydrothermal carbonization (HTC) of lignocellulose biomass, Energy Fuel 25 (2011) 1802-1810.

DOI: 10.1021/ef101745n

Google Scholar

[11] B. Hu, K. Wang, L. Wu, S.-H. Yu, M. Antonietti, M.-M. Titirici, Engineering carbon materials from the hydrothermal carbonization process of biomass, Adv. Mater. 22 (2010) 813-828.

DOI: 10.1002/adma.200902812

Google Scholar

[12] K.K. Lee, E. Björkman, D. Morin, M. Lilliestråle, F. Björefors, A.M. Andersson, N. Hedin, Effects of hydrothermal carbonization conditions on the textural and electrical properties of activated carbons, Carbon 107 (2016) 619-621.

DOI: 10.1016/j.carbon.2016.06.040

Google Scholar

[13] K. Guntagerng, G. Panomsuwan, A. Eiad-ua, Fundamental study of carbon materials derived from empty fruit bunch via hydrothermal carbonization, Walailak J. Sci. Technol. 15 (2018) 779-786.

DOI: 10.48048/wjst.2018.5964

Google Scholar

[14] S. Nizamuddin, H.A. Baloch, G.J. Griffin, N.M. Mubarak, A.W. Bhutto, R. Abro, S.A. Mazari, B.S. Ali, An overview of effect of process parameter on hydrothermal carbonization of biomass, Renew. Sustain. Energy Rev. 73 (2017) 1289-1299.

DOI: 10.1016/j.rser.2016.12.122

Google Scholar

[15] T. Kubilay, K. Selhan, B. Sema. A review of hydrothermal biomass processing. Renew. Sust. Energy Rev. 40 (2014) 673-687.

Google Scholar

[16] W. Lili, G. Yupeng, Z. Yanchao, L. Ying, Q. Yuning, R. Chunguang, M. Xiaoyu, W. Zichen. A new route for preparation of hydrochars from rice husk. Biores. Technol. 101 (2010) 9807-9810.

Google Scholar

[17] F. Fan, Z. Yang, H. Li, Z. Shi, H. Kan, Preparation and properties of hydrochars from macadamia nut shell via hydrothermal carbonization, R. Soc. Open. Sci. 5 (2018) 181126.

DOI: 10.1098/rsos.181126

Google Scholar

[18] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61 (2000) 14095.

DOI: 10.1103/physrevb.61.14095

Google Scholar

[19] A.C. Ferri, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Phil. Trans. R. Soc. Lond. A 362 (2004) 2477-2512.

Google Scholar

[20] K.S.W. Sing, Reporting physisorption data for gas/solid systems, Pure Appl. Chem. 54 (1982) 2201-2218.

Google Scholar