Promotion of Osteoblast Proliferation Activated by Betaglucan (BG) Derived from Yeast Sludge

Article Preview

Abstract:

In tissue engineering, biomaterials used for bone tissue substitutes attract increasing interests, especially for finding biologically active compounds that can activate proliferation of osteoblastic MG63 cells. The evaluation of the impact of a soluble yeast-derived β-(1-3), (1-6)-D-glucan (BG) extracted from distillery waste yeast sludge on viability and proliferation of MG63 cells was studied. Spray dried BG prepared from alkaline extraction was used as supplementary activator in osteoblastic cell culture system. The composition of BG was characterized using FTIR spectral analysis and BG analysis assay kit. MG63 human osteoblast cell-line was cultured on Dulbecco’s modified’s medium supplemented with various concentrations of BG ranging from 0.1 to 1.0 mg/mL. The cells were cultured up to 7 days under a humidified 5% CO2 atmosphere at 37°C and monitored the level of proliferation at pre-determined intervals. Results showed that increase in BG concentration substantially promoted MG63 cell proliferation. Optimal concentration was identified and found at 0.3 - 0.7 mg/mL. Results revealed that BG could be further utilized for the upregulation of osteoblastic proliferation positively related to the acceleration of bone regeneration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-15

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Ogasawara, H. Kawaguchi, S. Jinno, K. Hoshi, K. Itaka, T. Takato, K. Nakamura, H. Okayama, Bone Morphogenetic Protein 2-Induced Osteoblast Differentiation Requires Smad-Mediated Down-Regulation of Cdk6, Mol. Cell. Biol. 57(4) (2015) 6560-6568.

DOI: 10.1128/mcb.24.15.6560-6568.2004

Google Scholar

[2] C.C. Sala, M.A. Ribes, T.F. Muiños, L.R. Sancho, P.L. Chicón, C.A. Reverté, J.C. Camino, A. M. Gil, C.E. Semino, Current Applications of Tissue Engineering in Biomedicine, J. Biochips. Tiss. Chips. (2013) S2.

Google Scholar

[3] A. Przekoraa, K. Palka, G. Ginalska, Chitosan/ β-1,3-glucan/calcium phosphate ceramics composites— Novel cell scaffolds for bone tissue engineering application, J. Biotechnol. 182 (2014) 46–53.

DOI: 10.1016/j.jbiotec.2014.04.022

Google Scholar

[4] K. Saekhor, W. Udomsinprasert, S. Honsawek, W. Tachaboonyakiat, Preparation of an injectable modified chitosan-based hydrogel approaching for bone tissue engineering, J. Biol. Macromol. 123 (2019) 167-173.

DOI: 10.1016/j.ijbiomac.2018.11.041

Google Scholar

[5] I.M.P.L.V.O. Ferreira, O. Pinhoa, E. Vieira and J.G. Tavarel, Brewer's Saccharomyces yeast biomass: characteristics and potential applications, Trends Food Sci. Technol. 21 (2010) 77-84.

DOI: 10.1016/j.tifs.2009.10.008

Google Scholar

[6] M.B. Ye, J.P. Bak, C.S. An, H.L. Jin, J.M. Kim, H.J. Kweon, D.K. Choi, P.J. Park, Y.J. Kim, B.O. Lim, Dietary β-glucan regulates the levels of inflammatory factors, inflammatory cytokines, and immunoglobulins in interleukin-10 knockout mice, J. Med. Food. 14 (2011) 468–474.

DOI: 10.1089/jmf.2010.1197

Google Scholar

[7] Y. Cao, Y. Sun, S. Zou, M. Li, X. Xu, orally administered baker's yeast β glucan promotes glucose and lipid homeostasis in the livers of obesity and diabetes model mice, J. Agric. Food Chem. 65 (2017) 9665–9674.

DOI: 10.1021/acs.jafc.7b03782

Google Scholar

[8] B. Du, C. Lin, Z. Bian, B. Xu, An insight into anti-inflammatory effects of fungal betaglucans, Trends Food Sci. Technol. 41 (2015) 49–59.

DOI: 10.1016/j.tifs.2014.09.002

Google Scholar

[9] S. Kalra, S. Jood, Effect of dietary barley β glucan on cholesterol and lipoprotein fractions in rats, J. Cereal Sci. 31 (2000) 141–145.

DOI: 10.1006/jcrs.1999.0290

Google Scholar

[10] A. Rieder, A.B. Samuelsen, Do cereal mixed-linked β-glucans possess immunomodulating activities, Mol. Nutr. Food Res. 56 (2012) 536–547.

DOI: 10.1002/mnfr.201100723

Google Scholar

[11] A.A. Khan, A. Gani, F.A. Masoodi, F. Amin, I.A. Wani, F.A. Khanday, A. Gani, Structural, thermal, functional, antioxidant & antimicrobial properties of β-D-glucan extracted from baker's yeast (Saccharomyces cerevisiae)—Effect of β-irradiation, Carbohydr. Polym. 140 (2016) 442–450.

DOI: 10.1016/j.carbpol.2016.01.003

Google Scholar

[12] F.M. Zhu, B. Du, Z.X. Bian, B.J. Xu, Beta-glucans from edible and medicinal mushrooms: characteristics, physicochemical and biological activities. J. Food Compos. Anal. 41 (2015) 165-173.

DOI: 10.1016/j.jfca.2015.01.019

Google Scholar

[13] J. Majtan, M. Jesenak, β-Glucans: Multi-Functional Modulator of Wound Healing, Molecules. 23 (2018) 806.

DOI: 10.3390/molecules23040806

Google Scholar

[14] G. Seo, C. Hyun, S. Choi, Y.M. Kim, M. Cho, The wound healing effect of four types of beta‑glucan, Appl. Biol. Chem. 62 (2019) 1-9.

DOI: 10.1186/s13765-019-0428-2

Google Scholar

[15] J.G. Schmidt, E.W. Andersen, B.K. Ersbøll, M.E. Nielsen, Muscle wound healing in rainbow trout (Oncorhynchus mykiss), Fish Shellfish Immunol. 48 (2017) 273-284.

DOI: 10.1016/j.fsi.2015.12.010

Google Scholar

[16] C. Wu, T. Chen, Y. Xin, Z. Zhang, Z. Ren, J. Lei, B. Chu, Y. Wang, S. Tang, Nanofibrous asymmetric membranes self-organized from chemically heterogeneous electrospun mats for skin tissue engineering, Biomed. Mater. 11 (2016) 035019.

DOI: 10.1088/1748-6041/11/3/035019

Google Scholar

[17] J.S. Choi, J.W. Kim, G.W. Jung, S.B. Moon, H.-R. Cho, S.H. Sung, J.J. Jung, Y.S. Kwon, S.K Ku, J.H. Sohn, Effect of β-glucan from Aureobasidium on TGF-1-modulated in vitro dermal wound repair, Toxicol. Environ. Health Sci. 8 (2016) 12–18.

DOI: 10.1007/s13530-016-0257-1

Google Scholar

[18] Z. Vesna, P.T. Vlatka, G. Petra, G. Vanja, F.G. Jelena, S. Siniša, Application of different drying methods on β-glucan isolated from spent brewer's yeast using alkaline procedure. Agric. Conspec. Sci. 75 (2010) 45.

Google Scholar

[19] N. Pangkumsri, B.S. Sivamaruthi., S. Sirilun, S. Peerajan, P. Kesika, K. Chaiyasut, C. Chaiyasut, Extraction of β-glucan from Saccharomyces cerevisiae: Comparison of different extraction methods and in vivo assessment of immunomodulatory effect in mice. Food Sci. Technol. 37(1) (2017) 124-130.

DOI: 10.1590/1678-457x.10716

Google Scholar

[20] Y.J. Honga, J.S. Chunb, W.K. Lee, Association of collagen with calcium phosphate promoted osteogenic responses of osteoblast-like MG63 cells, Colloids. Surf. B. Biointerfaces. 83 (2011) 245–253.

DOI: 10.1016/j.colsurfb.2010.11.028

Google Scholar

[21] E.V. Soares, H.M. Soares, Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review, Environ. Sci. Pollut. Res. Int. 19(4) (2012) 1066-1083.

DOI: 10.1007/s11356-011-0671-5

Google Scholar

[22] Q.Y. Yin, P.W.J. de Groot, H.A.L. Dekker, L. de Jong, F. Klis, C.G. de Koster. Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J. Biol. Chem. 280 (2005) 20894–20901.

DOI: 10.1074/jbc.m500334200

Google Scholar

[23] T.S. Basso, C. Pungartnik, M. Brendel, Low productivity of ribonucleotide reductase in Saccharomyces cerevisiae increases sensitivity to stannous chloride, Genet. Mol. Res. 7 (2008) 1-6.

DOI: 10.4238/vol7-1gmr407

Google Scholar

[24] M. Knauf, K. Kraus, Specific yeast developed for modern ethanol production, Sugar Industry. 131 (2006) 753-758.

Google Scholar

[25] A. Mueller, J. Raptis, P.J. Rice, J.H. Kalbfleisch, R.D. Stout, H.E. Ensley, W. Browder, D.L. Williams, The influence of glucan polymer structure and solution conformation on binding to (1→3)-β-D-glucan receptors in a human monocyte-like cell line, Glycobiology. 10(40) 2000 339-346.

DOI: 10.1093/glycob/10.4.339

Google Scholar

[26] G. Camilli, G. Tabouret, J. Quintin, The Complexity of Fungal β-Glucan in Health and Disease: effects on the Mononuclear Phagocyte System, Frontiers in Immunology. 9 (2018) 673.

DOI: 10.3389/fimmu.2018.00673

Google Scholar

[27] H.J. Son, H.C. Bae, H.J. Kim, D.H. Lee, D.W. Han, J.C. Park, Effects of β -glucan on proliferation and migration of fibroblast, Curr. Appl. Phys. 5 (2005) 468–471.

Google Scholar

[28] A. Mueller, J. Raptis, P.J. Rice, J.H. Kalbfleisch, R.D. Stout, H.E. Ensley, W. Browder, and D.L. Williams, The influence of glucan polymer structure and solution conformation on binding to (1,3)-β-D-glucan receptors in a human monocyte-like cell line, Glycobiology. 10 (2000) 339–346.

DOI: 10.1093/glycob/10.4.339

Google Scholar

[29] P. Kougias, D. Wei, P.J. Rice, H.E. Ensley, J. Kalbfleisch, D.L. Williams, B. IW, Normal human fibroblasts express pattern recognition receptors for fungal (1→3)-β-D-glucans. Infect. Immun. 69 (2001) 3933-3938.

DOI: 10.1128/iai.69.6.3933-3938.2001

Google Scholar

[30] K. Madhumathi, N.S. Binulal, H. Nagahama, H. Tamura, K.T. Shalumon, N. Sel-vamurugan, S.V. Nair, R. Jayakumar, Int. J. Biol. Macromol. 44 (2009) 1–5.

Google Scholar

[31] X.N. Qi, Z.L. Mou, J. Zhang, Z.Q. Zhang, Preparation of chitin/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds, J. Biomed. Mater. Res. A. 102 (2014) 366–372.

DOI: 10.1002/jbm.a.34710

Google Scholar

[32] J. Venkatesan, R. Pallela, I. Bhatnagar, S.K. Kim, Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 51 (2012) 1033–1042.

DOI: 10.1016/j.ijbiomac.2012.08.020

Google Scholar