Antifouling Property and Morphology of Polyethersulfone Membranes Blended with Bio-Based Amphiphilic Polymer Additives

Article Preview

Abstract:

In this work, polyethersulfone (PES) was blended with bio-based polymers, PLA (hydrophobic polymer) and PEG (hydrophilic polymer), in order to improve the antifouling properties of PES membranes. This was done by way of non-solvent induced phase separation. Membrane properties such as morphology, hydrophilicity/hydrophobicity, adsorption fouling and mechanical properties were characterized. All blended membranes displayed higher hydrophilicity than that of pristine PES. This was confirmed by lower water contact angle and higher water adsorption. It was found that membranes with 5 wt% PLA/PEG gave a water contact angle of 65.1° and water adsorption for 4.94. These were the best values obtained. These modifications yielded low protein adsorption leading to reduce membrane fouling. Adding a greater amount of PLA/PEG reduced the membrane pore size, enhanced hydrophilicity and improved the antifouling capability

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-44

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Rahimpour, M. Jahanshahi, S. Khalili, A. Mollahosseini, A. Zirepour, B. Rajaeian, Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane, Desalination 286 (2012) 99–107.

DOI: 10.1016/j.desal.2011.10.039

Google Scholar

[2] Q. Shi, Y. Su, S. Zhu, C. Li, Y. Zhao, Z. Jiang, A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane, J. Membr. Sci. 303 (2007) 204–212.

DOI: 10.1016/j.memsci.2007.07.009

Google Scholar

[3] H. Wang, L. Yang, X. Zhao, T. Yu, Q. Du, Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by blending sulfonated polyethersulfone, Chin. J. Chem. Eng. 17 (2009) 324–329.

DOI: 10.1016/s1004-9541(08)60211-6

Google Scholar

[4] B. K. Chaturvedi, A. K. Ghosh, V. Ramachandhran, M. K. Trivedi, M. S. Hanra and B. M. Misra, Preparation, characterization and performance of polyethersulfone ultrafiltration membranes, Desalination. 133(1) (2001) 31-40.

DOI: 10.1016/s0011-9164(01)00080-7

Google Scholar

[5] R. M. Boom, I. M. Wienk, T. van den Boomgaard and C. A. Smolders, Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive, J. Membrane Sci. 73(2) (1992) 277-292.

DOI: 10.1016/0376-7388(92)80135-7

Google Scholar

[6] P. S. T. Machado, A. C. Habert and C. P. Borges, Membrane formation mechanism based on precipitation kinetics and membrane morphology: flat and hollow fiber polysulfone membranes, J. Membrane Sci. 155(2) (1999) 171-183.

DOI: 10.1016/s0376-7388(98)00266-x

Google Scholar

[7] M. Ulbricht, M. Riedel and U. Marx, Novel photochemical surface functionalization of polysulfone ultrafiltration membranes for covalent immobilization of biomolecules, J. Membrane Sci. 120(2) (1996) 239-259.

DOI: 10.1016/0376-7388(96)00148-2

Google Scholar

[8] D. S. Wavhal and E. R. Fisher, Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization, J. Membrane Sci. 209(1) (2002) 255-269.

DOI: 10.1016/s0376-7388(02)00352-6

Google Scholar

[9] A. Nabe, E. Staude and G. Belfort, Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions, J. Membrane Sci. 133(1) (1997) 57-72.

DOI: 10.1016/s0376-7388(97)00073-2

Google Scholar

[10] Information on https://omnexus.specialchem.com/selection-guide/polyethersulfone-pes-thermoplastic.

Google Scholar

[11] S. Saeidlou, M. A. Huneault, H. Li and C. B. Park, Poly(lactic acid) crystallization, Prog. Polym. Sci. 37(12) (2012) 1657-1677.

DOI: 10.1016/j.progpolymsci.2012.07.005

Google Scholar

[12] H. Susanto and M. Ulbricht, Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives, J. Membrane Sci. 327(1-2) (2009) 125-135.

DOI: 10.1016/j.memsci.2008.11.025

Google Scholar

[13] J. F. Li, Z. L. Xu, H. Yang, C. P. Feng, J. H. Shi, Hydrophilic Microporous PES Membranes Prepared byPES/PEG/DMAc Casting Solutions, J. Appl. Polym. Sci. 107 (2008), 4100–4108.

DOI: 10.1002/app.27626

Google Scholar

[14] Information on https://imagej.nih.gov/ij/.

Google Scholar

[15] G.‏ Demirel, T‏.Caykara, M‏. Demiray and M‏. Gürü, Effect of Pore‏-Forming Agent Type on Swelling Properties of Macroporous Poly‏(N‏-[3‏-(dimethylaminopropyl‏)]-methacrylamide‏-co‏-acrylamide) Hydrogels, J. Macromol. Sci. A. 46(1) (2008) 58-64.

DOI: 10.1080/10601320802515316

Google Scholar

[16] J. Chen, J. Li, X. Zhan, X. Han and C. Chen, Effect of PEG additives on properties and morphologies of polyetherimide membranes prepared by phase inversion, Front. Chem. Eng. China. 4(3) (2010) 300–306.

DOI: 10.1007/s11705-009-0280-8

Google Scholar