Load Matching for Giant Magnetoimpedance Sensor in Coaxial Configuration

Article Preview

Abstract:

Operation on the principle of the giant magnetoimpedace (GMI) magnetic field sensor was designed and tested for the case of CoFeSiB amorphous wire of 6 mm length. We considered magnetic field displacement of the order of 10 Oe. Piece of amorphous wire was placed as a central conductor of a coaxial cable. The maximum slope of the sensor GMI characteristic was observed at the terminator resistance RT = 50 Ohm, while the maximum of the GMI ratio variation was observed in the not “matched” (RT = 75 Ohm) but closer to the “short” mode. Amorphous wire placed as a central conductor of a coaxial cable serves as a sensitive element with high sensitivity with respect to applied field making possible to use a simple design with a miniature coil for magnetic field biasing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-24

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.R. Baselt, G.U. Lee, M. Natesan, S.W. Metzger, P.E. Sheehan, R.J. Colton, A biosensor based on magnetoresistance technology, Biosens. Bioelectron. 13 (1998) 731-739.

DOI: 10.1016/s0956-5663(98)00037-2

Google Scholar

[2] A.V. Svalov, P.A. Savin, G.V. Kurlyandskaya, J. Gutierrez, J.M. Barandiaran, V.O. Vas'kovskiy, Spin-valve structures with Co-Tb-based multilayers, IEEE Trans. Magn. 38(5) (2002) 2782-2784.

DOI: 10.1109/tmag.2002.803112

Google Scholar

[3] H.A. Ferreira, D.L. Graham, P.P. Freitas, J.M.S. Cabral, Biodetection using magnetically labeled biomolecules and arrays of spin valve sensors, J. Appl. Phys. 93(10) (2002)7281-7286.

DOI: 10.1063/1.1544449

Google Scholar

[4] T. Uchiyama, K. Mohri,Y. Honkura, L.V. Panina, Recent advances of pico-tesla resolution magneto-impedance sensor based on amorphous wire CMOS IC MI Sensor, IEEE Trans. Magn. 48(11) (2012) 3833-3839.

DOI: 10.1109/tmag.2012.2198627

Google Scholar

[5] B. Li, M.N. Kavaldzhiev, J. Kosel, Flexible magnetoimpedance sensor, J. Magn. Magn. Mater. 378 (2015) 499-505.

DOI: 10.1016/j.jmmm.2014.11.067

Google Scholar

[6] N.A. Buznikov, A.P. Safronov, I. Orue, E.V. Golubeva, V.N. Lepalovskij, A.V. Svalov, A.A. Chlenova, G.V. Kurlyandskaya, Modelling of magnetoimpedance response of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection, Biosens. Bioelectron. 117 (2018) 366-372.

DOI: 10.1016/j.bios.2018.06.032

Google Scholar

[7] V.E. Makhotkin, B.P. Shurukhin, V.A. Lopatin, P.Y. Marchukov Y.K. Levin, Magnetic field sensors based on amorphous ribbons, Sens. Act. A Phys. 25-27 (1991) 759-762.

DOI: 10.1016/0924-4247(91)87083-f

Google Scholar

[8] R.S. Beach, A.E. Berkowitz, Giant magnetic field dependent impedance of amorphous FeCoSiB wire, Appl. Phys. Lett. 64 (1994) 3652-3654.

DOI: 10.1063/1.111170

Google Scholar

[9] N.A. Buznikov, The effect of surface domain structure on low-field microwave absorption of magnetic microwires, J. Phys. D: Appl. Phys. 43 (2010) 055002 1-4.

DOI: 10.1088/0022-3727/43/5/055002

Google Scholar

[10] G.V. Kurlyandskaya, R. El Kammouni, S.O. Volchkov, S.V. Shcherbinin, A. Larrañaga, Magnetoimpedance sensitive elements based on cube/feconi electroplated wires in single and double wire configurations, IEEE Trans. Magn. 53 (2017) 2000415.

DOI: 10.1109/tmag.2016.2619739

Google Scholar

[11] H. Chiriac, D.D. Herea, S.J. Corodeanu, Microwire array for giant magneto-impedance detection of magnetic particles for biosensor prototype, Magn. Magn. Mater. 311 (2007) 425-428.

DOI: 10.1016/j.jmmm.2006.11.207

Google Scholar

[12] M. Vazquez M, A. Hernando, A soft magnetic wire for sensor applications, J. Phys. D.: Appl. Phys. 29 (1996) 939-949.

DOI: 10.1088/0022-3727/29/4/001

Google Scholar

[13] E.V. Golubeva, S.O. Volchkov, S.V. Shcherbinin, G.V. Kurlyandskaya, Magnetoimpedance properties of amorphous CoFeSiB wire in wide frequency range: focus on sensory applications, Russ. J. Nondestr. Test. in print, (2018).

DOI: 10.1134/s1061830918100066

Google Scholar

[14] S.V. Shcherbinin, S.O. Volchkov, V.N. Lepalovskii, A.A. Chlenova, G.V. Kurlyandskaya, System based on a ZVA-67 vector network analyzer for measuring high-frequency parameters of magnetic film structures, Russ. J. Nondestr. Test. 53(3) (2017) 204-212.

DOI: 10.1134/s1061830917030093

Google Scholar

[15] Belden 83265 Coax - 50 Ohm Coax 2017 Detailed Specifications & Technical Data.

Google Scholar

[16] A.S. Antonov, I.T. Iakubov, A.N. Lagarkov, Nondiagonal impedance of amorphous wires with circular magnetic anisotropy, J. Magn. Magn. Mater. 187(2) (1998) 252-260.

DOI: 10.1016/s0304-8853(98)00114-0

Google Scholar

[17] P. Ripka, L. Kraus, Magnetoimpedance and magnetoinductance (Magnetic sensors and magnetometers) ed. P. Ripka, Artec House, Boston, London, 2001, p.350.

Google Scholar

[18] D.K. Cheng, Field and wave electromagnetics, Tsinghua University Press, China, (2006).

Google Scholar