[1]
J.M. Barandiarán, J. Gutiérrez and A. García-Arribas. Magnetoelasticity in amorphous ferromagnets: basic principles and applications. Physica Status Solidi A 208 (2011) 2258-2264.
DOI: 10.1002/pssa.201000738
Google Scholar
[2]
A. García-Arribas, J.M. Barandiarán and J. Gutiérrez. Magnetoelastic sensors. Encyclopedia of Sensors (5), edited by C.A. Grimes, E.C. Dickey and M.V. Pishko, American Scientific Publishers, USA, p.467 (2006). ISBN: 1-58883-056-X.
Google Scholar
[3]
C.A. Grimes, C.S. Mungle, K. Zeng, M.K. Jain, W.R. Dreschel, M. Pauloseand and K.G. Ong. Wireless magnetoelastic resonance sensors: a critical review. Sensors 2 (2002) 294-313.
DOI: 10.3390/s20700294
Google Scholar
[4]
R. Jahns, S. Zabel, S. Maruska, B. Gojdka, B. Wagner, R. Knöchel, R. Adelung and F. Faupel. Michroelectromechanical magnetic field sensor based on ΔE effect. Applied Physics Letters 105 (2014) 052414.
DOI: 10.1063/1.4891540
Google Scholar
[5]
B. Gojdka, R. Jahns, K. Meurisch, H. Greve, R. Adelung, E. Quandt, R. Knöchel and F. Faupel. Fully integrable magnetic field sensor ased on delta-E effect. Applied Physics Letters 99 (2011) 223502.
DOI: 10.1063/1.3664135
Google Scholar
[6]
N. Bouropoulos, D. Kouzoudis and C.A. Grimes. The real-time, in situ monitoring of calcium oxalate and brushite precipitation using magnetoelastic sensors. Sensors and Actuators B: Chemical 109 (2005) 227–232.
DOI: 10.1016/j.snb.2004.12.054
Google Scholar
[7]
A. Sagasti, N. Bouropoulos, D. Kouzoudis, A. Panagiotopoulos, E. Topoglidis and J. Gutierrez. Nanostrustured ZnO in a Metglas/ZnO/Hemoglobin modified electrode to detect the oxidation of the hemoglobin simultaneously by cyclic voltammetry and magnetoelastic resonance. Materials 10 (2017) 849 (17p).
DOI: 10.3390/ma10080849
Google Scholar
[8]
R.M. Bozorth, Ferromagnetism, edited by D. Van Nostrand Company Inc., USA, pp.684-699 (1964). ISBN: 0780310322.
Google Scholar
[9]
N.P. Kobelev and Ya.M. Soifer. Elastic properties and ΔE effect in nanocrystalline Fe.Cu.Nb.Si.B alloy. Nanostructured Materials 10 (1998) 449-456.
DOI: 10.1016/s0965-9773(98)00085-3
Google Scholar
[10]
V.M. Laletin and D.A. Filippov. Influence of the ΔE effect on the field dependence of the magnetoelectric effect in the region of electromechanical resonance. Technichal Physics 63 (2018) 186-189.
DOI: 10.1134/S1063784218020214
Google Scholar
[11]
S. Schmidt and C.A. Grimes. Characterization of nano-dimensional thin-film elastic moduli using magnetoelastic sensors. Sensors and Actuators A: Physical 94 (2001) 189-196.
DOI: 10.1016/S0924-4247(01)00708-7
Google Scholar
[12]
A. Lasheras, J. Gutiérrez and J.M. Barandiarán. Quantification of size effects in the magnetoelectric response of metallic glass/PVDF laminates. Applied Physics Letters 108 (2016) 222903 (5p).
DOI: 10.1063/1.4953156
Google Scholar
[13]
G. Samourgkanidis and D. Kouzoudis. Experimental detection by magnetoelastic sensor and computational analysis with finite elements, of the bending modes of a cantilever beam with minor damage. Sensors and Actuators A: Physical 276 (2018) 155-164.
DOI: 10.1016/j.sna.2018.04.033
Google Scholar
[14]
J. Gutiérrez, J.M. Barandiarán and O.V. Nielsen. Magnetoelastic properties of some Fe-rich Fe-Co-Si-B metallic glasses. Physica Status Solidi A 111 (1989) 279-283.
DOI: 10.1002/pssa.2211110129
Google Scholar
[15]
J.D. Livingston. Magnetomechanical properties of amorphous metals. Physica Status Solidi A 70 (1982) 591-596.
DOI: 10.1002/pssa.2210700228
Google Scholar
[16]
P. Mínguez, H.A. Davies, I. Todd, M.R.J. Gibbs, A. García-Arribas and J. Gutiérrez. The magnetoelastic properties of as-quenched and annealed Fe73.5−xAlxSi13.9B9Cu1Mo3 (x = 0, 2, 4, 6) alloys. Journal of Non−Crystalline Solids 287 (2001) 428-431.
DOI: 10.1016/S0022-3093(01)00587-7
Google Scholar