Influence of the Length-to-Width Ratio on the ΔE Effect of Amorphous Magnetoelastic Ribbons for Actuation Applications

Article Preview

Abstract:

Amorphous magnetoelastic alloys show outstanding magnetic and magnetoelastic properties that make them excellent candidates for simple detection and actuation devices. The coupling between elastic and magnetic properties reflects in the dependence of the Young’s modulus with the applied magnetic field. We present a study of the change of the Young’s modulus with the applied magnetic field in ribbons of Fe-Ni-Co-Si-B composition. Strips of different lengths (L = 35, 30, 25, 20 mm) and widths (w = 5, 3.3, 2.5, 1.7 mm) have been measured and obtained results analyzed in terms of the different length-to-width ratios (4 < R < 21). From our observations, depth of the ΔE effect reduces and needed applied magnetic bias field for minimum Young’s modulus value increases as the strips shortens. In order to test the applicability of these materials in a situation of open/close simple designed gas valve, FEM simulations have been performed by using the experimentally measured Young’s modulus values, searching to estimate the maximum deflection of such a strip when working under applied constant pressure. Obtained useful deflection ranges from 1 mm to 10 mm, telling us about the feasibility of this amorphous magnetoelastic ribbons for simple gas valve applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Barandiarán, J. Gutiérrez and A. García-Arribas. Magnetoelasticity in amorphous ferromagnets: basic principles and applications. Physica Status Solidi A 208 (2011) 2258-2264.

DOI: 10.1002/pssa.201000738

Google Scholar

[2] A. García-Arribas, J.M. Barandiarán and J. Gutiérrez. Magnetoelastic sensors. Encyclopedia of Sensors (5), edited by C.A. Grimes, E.C. Dickey and M.V. Pishko, American Scientific Publishers, USA, p.467 (2006). ISBN: 1-58883-056-X.

Google Scholar

[3] C.A. Grimes, C.S. Mungle, K. Zeng, M.K. Jain, W.R. Dreschel, M. Pauloseand and K.G. Ong. Wireless magnetoelastic resonance sensors: a critical review. Sensors 2 (2002) 294-313.

DOI: 10.3390/s20700294

Google Scholar

[4] R. Jahns, S. Zabel, S. Maruska, B. Gojdka, B. Wagner, R. Knöchel, R. Adelung and F. Faupel. Michroelectromechanical magnetic field sensor based on ΔE effect. Applied Physics Letters 105 (2014) 052414.

DOI: 10.1063/1.4891540

Google Scholar

[5] B. Gojdka, R. Jahns, K. Meurisch, H. Greve, R. Adelung, E. Quandt, R. Knöchel and F. Faupel. Fully integrable magnetic field sensor ased on delta-E effect. Applied Physics Letters 99 (2011) 223502.

DOI: 10.1063/1.3664135

Google Scholar

[6] N. Bouropoulos, D. Kouzoudis and C.A. Grimes. The real-time, in situ monitoring of calcium oxalate and brushite precipitation using magnetoelastic sensors. Sensors and Actuators B: Chemical 109 (2005) 227–232.

DOI: 10.1016/j.snb.2004.12.054

Google Scholar

[7] A. Sagasti, N. Bouropoulos, D. Kouzoudis, A. Panagiotopoulos, E. Topoglidis and J. Gutierrez. Nanostrustured ZnO in a Metglas/ZnO/Hemoglobin modified electrode to detect the oxidation of the hemoglobin simultaneously by cyclic voltammetry and magnetoelastic resonance. Materials 10 (2017) 849 (17p).

DOI: 10.3390/ma10080849

Google Scholar

[8] R.M. Bozorth, Ferromagnetism, edited by D. Van Nostrand Company Inc., USA, pp.684-699 (1964). ISBN: 0780310322.

Google Scholar

[9] N.P. Kobelev and Ya.M. Soifer. Elastic properties and ΔE effect in nanocrystalline Fe.Cu.Nb.Si.B alloy. Nanostructured Materials 10 (1998) 449-456.

DOI: 10.1016/s0965-9773(98)00085-3

Google Scholar

[10] V.M. Laletin and D.A. Filippov. Influence of the ΔE effect on the field dependence of the magnetoelectric effect in the region of electromechanical resonance. Technichal Physics 63 (2018) 186-189.

DOI: 10.1134/S1063784218020214

Google Scholar

[11] S. Schmidt and C.A. Grimes. Characterization of nano-dimensional thin-film elastic moduli using magnetoelastic sensors. Sensors and Actuators A: Physical 94 (2001) 189-196.

DOI: 10.1016/S0924-4247(01)00708-7

Google Scholar

[12] A. Lasheras, J. Gutiérrez and J.M. Barandiarán. Quantification of size effects in the magnetoelectric response of metallic glass/PVDF laminates. Applied Physics Letters 108 (2016) 222903 (5p).

DOI: 10.1063/1.4953156

Google Scholar

[13] G. Samourgkanidis and D. Kouzoudis. Experimental detection by magnetoelastic sensor and computational analysis with finite elements, of the bending modes of a cantilever beam with minor damage. Sensors and Actuators A: Physical 276 (2018) 155-164.

DOI: 10.1016/j.sna.2018.04.033

Google Scholar

[14] J. Gutiérrez, J.M. Barandiarán and O.V. Nielsen. Magnetoelastic properties of some Fe-rich Fe-Co-Si-B metallic glasses. Physica Status Solidi A 111 (1989) 279-283.

DOI: 10.1002/pssa.2211110129

Google Scholar

[15] J.D. Livingston. Magnetomechanical properties of amorphous metals. Physica Status Solidi A 70 (1982) 591-596.

DOI: 10.1002/pssa.2210700228

Google Scholar

[16] P. Mínguez, H.A. Davies, I. Todd, M.R.J. Gibbs, A. García-Arribas and J. Gutiérrez. The magnetoelastic properties of as-quenched and annealed Fe73.5−xAlxSi13.9B9Cu1Mo3 (x = 0, 2, 4, 6) alloys. Journal of Non−Crystalline Solids 287 (2001) 428-431.

DOI: 10.1016/S0022-3093(01)00587-7

Google Scholar