Graphene Reinforced Composites as Sensing Elements

Article Preview

Abstract:

The present study deals with the optimal design of a Graphene reinforced composite. The Graphene was prepared by chemical exfoliation process and was chemically blended with matrix material in acetone. Further chemically mixed solution was exposed to air for acetone vaporization. Next, this Graphene composite was extruded through twin screw extrusion (TSE) for preparation of feedstock filament with 1.75±0.05mm diameter via fused deposition modelling (FDM). The presented results suggest that statistically controlled Graphene reinforced functional prototypes can be usefully employed as sensors for bio-medical and engineering applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-44

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.G., Banica, Chemical sensors and biosensors: fundamentals and applications. John Wiley & Sons. (2012).

Google Scholar

[2] A. Turner, I. Karube, and G.S. Wilson,  Biosensors: fundamentals and applications. Oxford university press, (1987).

Google Scholar

[3] S. Park, and R.S. Ruoff, Chemical methods for the production of Graphenes. Nat. nanotect., 4(4) (2009) 217.

Google Scholar

[4] C.Y. Su, , A.Y. Lu, , Y. Xu, , F.R. Chen, , A.N. Khlobystov, and L.J. Li, High-quality thin Graphene films from fast electrochemical exfoliation. ACS nano, 5(3) (2011) 2332-2339.

DOI: 10.1021/nn200025p

Google Scholar

[5] G. Calderon-Ayala, , M. Cortez-Valadez, , P.G. Mani-Gonzalez, , R.B. Hurtado, , J.I. Contreras-Rascón, R.C. Carrillo-Torres, M.E. Zayas, S.J. Castillo, A.R. Hernández-Martínez, and M. Flores-Acosta,. Green synthesis of reduced Graphene oxide using ball milling. Car. Lett., 21 ( 2017) 93-97.

DOI: 10.5714/cl.2017.21.093

Google Scholar

[6] H. Yang, Y. Hernandez, A. Schlierf, A. Felten, A. Eckmann, S. Johal, P. Louette, J.J. Pireaux, X. Feng, K. Mullen, and V. Palermo, A simple method for Graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt. Carbon, 53 ( 2013) 357-365.

DOI: 10.1016/j.carbon.2012.11.022

Google Scholar

[7] S. Mao, , H. Pu, and J. Chen, Graphene oxide and its reduction: modeling and experimental progress. Rsc Adv., 2(7) ( 2012) 2643-2662.

DOI: 10.1039/c2ra00663d

Google Scholar

[8] Y. Mao, S. Zhang, , D. Zhang, , T.W. Chan, and L. Liu, Enhancing Graphene oxide reinforcing potential in composites by combined latex compounding and spray drying. Mater. Res. Express, 1(2) ( 2014) 025009.

DOI: 10.1088/2053-1591/1/2/025009

Google Scholar

[9] Shao G, Lu Y, Wu F, Yang C, Zeng F and Wu Q 2012J. Mater. Sci.4(10) 4400-4409.

Google Scholar

[10] M. Monajjemi, Liquid-phase exfoliation (LPE) of graphite towards Graphene: An ab initio study. J. Mol. Liq., 230 ( 2017) 461-472.

DOI: 10.1016/j.molliq.2017.01.044

Google Scholar

[11] S. Sahoo, , G. Hatui, , P. Bhattacharya, , S. Dhibar, and C.K. Das, One pot synthesis of Graphene by exfoliation of graphite in ODCB. Graphene, 2(01) ( 2013) 42.

DOI: 10.4236/graphene.2013.21006

Google Scholar

[12] W. Choi, I. Lahiri, R. Seelaboyina, and Y.S. Kang, , Synthesis of Graphene and its applications: a review. Crit. Rev. Solid State, 35(1) ( 2010) 52-71.

DOI: 10.1080/10408430903505036

Google Scholar

[13] J.M., Irudayaraj. Biomedical nanosensors. Pan Stanford, (2012).

Google Scholar

[14] M.M. Hantel, Graphite oxide and Graphene oxide based electrode materials for electrochemical double layer capacitors (Doctoral dissertation) (2013).

Google Scholar

[15] A. Fortunato, F. Fraternali, A. Angelillo, Structural capacity of masonry walls under horizontal loads. Int. J. Earthq. Eng., 31(1) (2014) 41-51.

Google Scholar

[16] M. Angelillo, Static analysis of a Guastavino helical stair as a layered masonry shell, Compos. Struct. 119 (2015), 298-304.

DOI: 10.1016/j.compstruct.2014.09.007

Google Scholar

[17] A. Gesualdo, C. Cennamo, A. Fortunato, G. Frunzio, M. Monaco, A. Angelillo, Equilibrium formulation of masonry helical stairs, Meccanica 52(8) (2017), 1963-1974.

DOI: 10.1007/s11012-016-0533-9

Google Scholar

[18] M. Angelillo, E. Babilio, A.Fortunato, M. Lippiello, A. Montanino, Analytic solutions for the stress field in static sandpiles. Mech. Mater. 95 (2016), 192-203.

DOI: 10.1016/j.mechmat.2016.01.015

Google Scholar

[19] F. Fraternali, G. Carpentieri, M. Modano, F. Fabbrocino, R.E. Skelton, A tensegrity approach to the optimal reinforcement of masonry domes and vaults through fiber-reinforced composite materials. Compos. Struct., 134 (2015) 247-254.

DOI: 10.1016/j.compstruct.2015.08.087

Google Scholar

[20] F. Colangelo, F. Messina, R. Cioffi, Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates. J. Hazard. Mater. 299 (2015)181–191.

DOI: 10.1016/j.jhazmat.2015.06.018

Google Scholar

[21] C. Ferone, F. Colangelo, F. Messina, F. Iucolano, B. Liguori, R. Cioffi, Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing. Materials. 6 (2013) 5000–5015.

DOI: 10.3390/ma6115000

Google Scholar

[22] F. Messina, C. Ferone, F. Colangelo, R. Cioffi, Low temperature alkaline activation of weathered fly ash: Influence of mineral admixtures on early age performance. Constr. Build. Mater. 86(2015)169–177.

DOI: 10.1016/j.conbuildmat.2015.02.069

Google Scholar

[23] F. Messina, C. Ferone, F. Colangelo, G. Roviello, R. Cioffi, Alkali activated waste fly ash as sustainable composite: Influence of curing and pozzolanic admixtures on the early­age physico­ mechanical properties and residual strength after exposure at elevated temperature. Compos. Part B. 132 (2018)161–169.

DOI: 10.1016/j.compositesb.2017.08.012

Google Scholar

[24] I. Farina, F. Fabbrocino, F. Colangelo, L. Feo, F. Fraternali, Surface roughness effects on the reinforcement of cement mortars through 3D printed metallic fibers. Compos. Part B, Eng., 99 (2016) 305-311.

DOI: 10.1016/j.compositesb.2016.05.055

Google Scholar

[25] A. D'Alessandro, M. Rallini, F. Ubertini, A.L. Materazzi, J. M. Kenny, Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications. Cement Concrete Comp. 65 (2016), 200-213.

DOI: 10.1016/j.cemconcomp.2015.11.001

Google Scholar

[26] T. El Sayed, W. Mock, A. Mota, F. Fraternali, M. Ortiz. Computational Assessment of Ballistic Impact on a High Strength Structural Steel/Polyurea Composite Plate. Comput. Mech., 43(4) (2009) 525-534.

DOI: 10.1007/s00466-008-0327-6

Google Scholar

[27] F. Fraternali, J.N. Reddy, A Penalty Model for the Analysis of Laminated Composite Shells. Int. J. Solids Struct, 30 (1993) 3337-3355.

DOI: 10.1016/0020-7683(93)90088-o

Google Scholar

[28] R. Singh, R. Kumar, L. Feo, F. Fraternali, Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement. Compos. Part B, Eng., 101 (2016) 77-86.

DOI: 10.1016/j.compositesb.2016.06.082

Google Scholar

[29] F. Fraternali, S. Spadea, L. Ascione, Buckling behavior of curved composite beams with different elastic response in tension and compression. Compos Struct, 100 (2013)280-289.

DOI: 10.1016/j.compstruct.2012.12.021

Google Scholar

[30] L. Ascione, V.P. Berardi, A. Giordano, S. Spadea, Pre-buckling imperfection sensitivity of pultruded FRP profiles, Compos. Part B-Eng. 72 (2015), 206-212.

DOI: 10.1016/j.compositesb.2014.12.014

Google Scholar

[31] A. Amendola, G. Benzoni, F. Fraternali, Non-linear elastic response of layered structures, alternating pentamode lattices and confinement plates. Compos. Part B, Eng., 115 (2017) 117-123.

DOI: 10.1016/j.compositesb.2016.10.027

Google Scholar

[32] F. Fraternali, A. Marino, T. Elsayed, A. Della Cioppa, On the structural shape optimization via variational methods and evolutionary algorithms. Mech. Adv. Mater. Struc., 18 (2011) 225-243.

DOI: 10.1080/15376494.2010.483319

Google Scholar

[33] G. Mancusi, F. Fabbrocino, L. Feo, F . Fraternali, Size effect and dynamic properties of 2D lattice materials, Compos. Part B-Eng. 112 (2017), 235-242.

DOI: 10.1016/j.compositesb.2016.12.026

Google Scholar

[34] Schmidt, F. Fraternali, Universal formulae for the limiting elastic energy of membrane networks. J. Mech. Phys. Solids., 60 (2012) 172-180.

DOI: 10.1016/j.jmps.2011.09.003

Google Scholar

[35] T. Elsayed, A. Mota, F. Fraternali, M. Ortiz. A Variational Constitutive Model for Soft Biological Tissues, J.Biomech. 41(7) (2008) 1458-1466.

DOI: 10.1016/j.jbiomech.2008.02.023

Google Scholar

[36] I. Simonini, M. Angelillo, A. Pandolfi, Theoretical and numerical analysis of the corneal air puff test, J. Mech. Phys. Solids 93 (2016), 118-134.

DOI: 10.1016/j.jmps.2016.04.012

Google Scholar