High-Temperature Creep Tests of Two Creep-Resistant Materials at Constant Stress and Constant Load

Article Preview

Abstract:

Creep is defined as a time dependent component of plastic deformation. Creep tests can be performed either at constant load or at constant applied stress. Engineering creep tests carried out at constant load are aimed at determination of the creep strength or creep fracture strength, i.e. the data needed for design. The constant stress tests are important as a data source for fundamental investigations of creep deformation and fracture mechanisms and for finite element modelling of more complex stress situations. For some materials, the difference between the two type of testing can be very small, while for other materials is large, depending on the creep plasticity of the material under testing. The paper aims to compare the creep results of two different creep-resistant materials: the advanced 9%Cr martensitic steel (ASME Grade P91) and a Zr1%Nb alloy obtained by both testing methods and to clarify the decisive factors causing observed differences in their creep behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

246-251

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Sklenička and L. Kloc, in: Power Plant Life Management and Performance Improvement, J.E. Oakey (Ed.), Woodhead Publishing Series in Energy: Number 23, chapter 5, Woodhead Publishing Ltd. (2011).

DOI: 10.1016/b978-1-84569-726-6.50021-3

Google Scholar

[2] J. Čadek: Creep in Metallic Materials. Elsevier, Amsterdam,The Netherlands (1988).

Google Scholar

[3] M.E. Kassner: Fundamentals of Creep in Metals and Alloys. Elsevier, Amsterdam,The Netherlands (2009).

Google Scholar

[4] V. Sklenička, K. Kuchařová, A. Dlouhý, J. Krejčí, in: Materials for Advanced Power Engineering, D. Coutsouradis et al (Eds.) Kluwer Avademic Publishers, Dordrecht, (1994), p.435.

DOI: 10.1007/978-94-011-1048-8_35

Google Scholar

[5] M. Kvapilová, K. Kuchařová, L. Kloc, V. Sklenička: Acta Phys Pol A Vol. 128 (2015), p.548.

DOI: 10.12693/aphyspola.128.548

Google Scholar

[6] T. Hostinský and J. Čadek: J Testing Evaluation Vol. 4 (1976), p.26.

Google Scholar

[7] S.R. Holdworth, in: Creep-Resistant Steels, F. Abe et al.(Eds.), Woodhead Publishing Ltd., chapter 14, p.403, Cambridge, England, (2008).

Google Scholar

[8] V. Sklenička, K. Kuchařová, M. Svoboda, L. Kloc, J. Buršík and A. Kroupa: Mater. Charact. Vol. 51 (2003), p.35.

Google Scholar

[9] C. Györi, Z. Hózer, K. Lassmann, A. Schubert, J. van de Laar, M. Cvan, B. Hatala, Extension of TRANSURANUS. Code Applicability with Niobium Containing Cladding Models (EXTRA), EU Research in Reactor Safety. In: Conclusion Symposium on Shared-Cost and Concerted Actions (FISA-2003) Proceedings – EUR21026, Luxembourg, 10-13 November 2003, pp.584-589.

Google Scholar

[10] O. Beneš, P. Van Uffelen, J. van de Laar, C. Györi, R.J.M. Konings, Z. Hózer: J. Nuvl. Mat. Vol. 414 (2011), p.88.

Google Scholar

[11] F.C. Monkman and N.J. Grant: Proc. ASTM Vol. 56 (1956), p.593.

Google Scholar

[12] V. Sklenička, K. Kuchařová, P. Král, M. Kvapilová, J. Dvořák: Kovove Mater. Vol. 55 (2017), p.69.

Google Scholar