Formation and Phase Transition of Crystalline Calcium Phosphate on Bioabsorbable Magnesium Alloy under Alkali Condition

Article Preview

Abstract:

In order to improve the corrosion resistance, bioabsorbable magnesium (Mg) alloy was immersed in an aqueous solution with three times of Ca2+ and HPO42- in comparison with those of conventional SBF at the moderate temperature. After immersion in the solution, the whole surface of Mg alloy was coated with plate-like crystals consisting of octacalcium phosphate (OCP). Then the OCP-coated Mg alloy was immersed in the alkali solution. Although significant change of morphology was not observed, the OCP formed on the Mg alloy was transformed to hydroxyapatite (HAp) under alkali condition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Elliot J.C., General chemistry of the calcium orthophosphates, in: Structure and Chemistry of the apatites and other calcium orthophosphates, Elsevier Science B.V. , Amsterdam, 1994, pp.1-62.

DOI: 10.1016/b978-0-444-81582-8.50006-7

Google Scholar

[2] S. Hiromoto, M. Inoue, T. Taguchi, M. Yamane, N. Ohtsu, In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite, Acta Biomater. 11 (2015) 520–530.

DOI: 10.1016/j.actbio.2014.09.026

Google Scholar

[3] E.S. Bogya, Z. Károly, R. Barabás, Atmospheric plasma sprayed silica–hydroxyapatite coatings on magnesium alloy substrates, Ceram. Int. 41 (2015) 6005–6012.

DOI: 10.1016/j.ceramint.2015.01.041

Google Scholar

[4] R. Rojaee, M. Fathi, K. Raeissi, Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating, Mater. Sci. Eng. C 33 (2013) 3817–3825.

DOI: 10.1016/j.msec.2013.05.014

Google Scholar

[5] Y.W. Song, D.Y. Shan, E.H. Han, Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application, Mater. Lett. 62 (2008) 3276–3279.

DOI: 10.1016/j.matlet.2008.02.048

Google Scholar

[6] R. Rojaee, M. Fathi, K. Raeissi, Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments, Appl. Surf. Sci. 285P (2013) 664–673.

DOI: 10.1016/j.apsusc.2013.08.108

Google Scholar

[7] A. Bigi, G. Falini, E. Foresti, M. Gazzano, A. Ripamonti, N. Rovveri, J. Inorg. Biochem. 49 (1993) 69­78.

Google Scholar

[8] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W., J. Biomed. Mater. Res. 24 (1990) 721-34.

DOI: 10.1002/jbm.820240607

Google Scholar

[9] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity, Biomaterials 27 (2006) 2907-15.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[10] H. Takadama, T. Kokubo, In vitro evaluation of bone bioactivity, in: T. Kokubo (Ed.), Bioceramics and their clinical applications, Woodhead Publishing, Cambridge, 2008, pp.165-182.

DOI: 10.1533/9781845694227.1.165

Google Scholar

[11] S. Watanabe, T. Yabutsuka, S. Takai, Biomimetic Crystalline Calcium Phosphate Coatings on Bioabsorbable Magnesium Alloy, Bioceramics 29 (2017) 81-85.

DOI: 10.4028/www.scientific.net/kem.758.81

Google Scholar

[12] JCPDS card 26-1056.

Google Scholar

[13] JCPDS card 24-0033.

Google Scholar

[14] J. E. Gray-Munro, M. Strong, The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31., J. Biomed. Mater. A 90, (2008) 339-350.

DOI: 10.1002/jbm.a.32107

Google Scholar