Comparison of Chemical Composition between Indonesian White Portland Cement and MTA as Dental Pulp Capping Material

Article Preview

Abstract:

Pulp capping has been suggested as one treatment of choice after pulp exposure. Calcium hydroxide [Ca (OH)2] recognized as gold standard of direct pulp capping matter for some decades. Throughout the time, a new cement known as mineral trioxide aggregate (MTA) has developed into a prominent alternative. A recent study found that matter as the most effective pulp capping material. Despite the fact, MTA is an expensive material. Several studies in different country show that portland cement has highly similarity chemical composition with MTA. The purpose of this study is to evaluate the chemical composition of white portland cement that fabricated in Indonesia compared to MTA. White portland cement fabricated in Indonesia was used as a sample in this study and commercial MTA as a control. Samples and control were assessed using X-ray fluorescence spectrometry (XRF) to figure out chemical composition and concentration. Investigating the wavelength of the functional group using Fourier Transform Infrared Spectroscopy (FTIR). The results show that composition, concentration, and functional group either Indonesian white portland cement and MTA has highly similar. Hence, it has a chance to use Indonesian white portland cement for dental pulp capping material as MTA substitution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-39

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.S. Al-Hiyasat, K.M. Barrieshi-Nusair, and M.A. Al-Omari, The radiographic outcomes of direct pulp-capping procedures performed by dental students: A retrospective study, J. Am. Dent. Assoc. 137 12 (2006) 1699–1705.

DOI: 10.14219/jada.archive.2006.0116

Google Scholar

[2] C. Barthel, B. Rosenkranz, A. Leuenberg, and J. Roulet, Pulp capping of carious exposures: treatment outcome after 5 and 10 years: a retrospective study, J. Endod. 26 9 (2000) 525–528.

DOI: 10.1097/00004770-200009000-00010

Google Scholar

[3] J. Camilleri, The chemical composition of mineral trioxide aggregate, J. Conserv. Dent. 11 4 (2008) 141.

DOI: 10.4103/0972-0707.48834

Google Scholar

[4] M. Torabinejad, C.U. Hong, F. McDonald, and T.R.P. Ford, Physical and chemical properties of a new root-end filling material, J. Endod. 21 7 (1995) 349–353.

DOI: 10.1016/s0099-2399(06)80967-2

Google Scholar

[5] K. Ida, T. Maseki, M. Yamasaki, S. Hirano, and H. Nakamura, The pH values of pulp-capping agents, J. Endod. 15 8 (1989) 365–368.

DOI: 10.1016/s0099-2399(89)80074-3

Google Scholar

[6] O. Téclès, P. Laurent, V. Aubut, and I. About, Human tooth culture: a study model for reparative dentinogenesis and direct pulp capping materials biocompatibility, J. Biomed. Mater. Res. - Part B Appl. Biomater. 85 1 (2008) 180–187.

DOI: 10.1002/jbm.b.30933

Google Scholar

[7] D.E. Witherspoon, Vital pulp therapy with new materials: new directions and treatment perspectives-permanent teeth, J. Endod. 34 7 (2008) 25–28.

DOI: 10.1016/j.joen.2008.02.030

Google Scholar

[8] L. Sawicki, C.H. Pameijer, K. Emerich, and B. Adamowicz-Klepalska, Histological evaluation of mineral trioxide aggregate and calcium hydroxide in direct pulp capping of human immature permanent teeth, Am. J. Dent. 21 4 (2008) 262–266.

Google Scholar

[9] T. J. Hilton et al., Comparison of Ca(OH)2 with MTA for direct pulp capping, J. Dent. Res. 92 7 (2013) S16–S22.

Google Scholar

[10] S. Asgary, F. Akbari Kamrani, and S. Taheri, Evaluation of antimicrobial effect of MTA, calcium hydroxide, and cement, Iran. Endod. J. 2 3 (2007) 105–9.

Google Scholar

[11] J. Camilleri, F.E. Montesin, L. Di Silvio, and T.R.P. Ford, The chemical constitution and biocompatibility of accelerated portland cement for endodontic use, Int. Endod. J. 38 11 (2005) 834–842.

DOI: 10.1111/j.1365-2591.2005.01028.x

Google Scholar

[12] J. Camilleri, F.E. Montesin, K. Brady, R. Sweeney, R.V. Curtis, and T.R.P. Ford, "The constitution of mineral trioxide aggregate, Dent. Mater. 21 4 (2005) 297–303.

DOI: 10.1016/j.dental.2004.05.010

Google Scholar

[13] I. Primathena, D. Nurdin, R. Adang, and A. Cahyanto, Composition and functional groups evaluation of indonesian grey portland cement as material for dental application, Key Eng. Mater. 782 (2018) 256–261.

DOI: 10.4028/www.scientific.net/kem.782.256

Google Scholar

[14] A.H. Hammad, M.A. Marzouk, and H.A. ElBatal, The effects of Bi2O3 on optical, FT-IR and thermal properties of SrO-B2O3 glasses, Silicon. 8 1 (2016) 123–131.

DOI: 10.1007/s12633-015-9283-x

Google Scholar

[15] Q. Li and N.J. Coleman, The hydration chemistry of ProRoot MTA, Dent. Mater. J. 34 4 (2015) 458–65.

Google Scholar

[16] S. Dahiya, A.S. Maan, R. Punia, R.S. Kundu, and S. Murugavel, Physical, optical and structural properties of xLi2O-(50–x)Bi2O3-10ZnO-40B2O3 glasses, Trans. Indian Ceram. Soc. 71 4 (2012) 225–228.

DOI: 10.1080/0371750x.2013.772736

Google Scholar

[17] E.A. Bortoluzzi, N.J. Broon, C.M. Bramante, R.B. Garcia, I.G. de Moraes, and N. Bernardineli, Sealing ability of MTA and radiopaque portland cement with or without calcium chloride for root-end filling, J. Endod. 32 9 (2006) 897–900.

DOI: 10.1016/j.joen.2006.04.006

Google Scholar

[18] M. Hosseinzade, R.K. Soflou, A. Valian, and H. Nojehdehian, Physicochemical properties of MTA, CEM, hydroxyapatite and nano hydroxyapatite-chitosan dental cements, Biomed. Res. 27 2 (2016) 442–448.

Google Scholar

[19] M. Kuratate, K. Yoshiba, Y. Shigetani, N. Yoshiba, H. Ohshima, and T. Okiji, Immunohistochemical analysis of nestin, osteopontin, and proliferating cells in the reparative process of exposed dental pulp capped with mineral trioxide aggregate, J. Endod. 34 8 (2008) 970–974.

DOI: 10.1016/j.joen.2008.03.021

Google Scholar

[20] T.R.P. Ford, M. Torabinejad, H.R. Abedi, L.K. Bakland, and S.P. Kariyawasam, Using mineral trioxide aggregate as a pulp-capping material, J. Am. Dent. Assoc. 127 10 (1996) 1491–1494.

DOI: 10.14219/jada.archive.1996.0058

Google Scholar

[21] I.M. Faraco and R. Holland, Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement, Dent. Traumatol. 17 4 (2001)163–166.

DOI: 10.1034/j.1600-9657.2001.170405.x

Google Scholar

[22] K.S. Min et al., Effect of mineral trioxide aggregate on dentin bridge formation and expression of dentin sialoprotein and heme oxygenase-1 in human dental pulp, J. Endod. 34 6 (2008) 666–70.

DOI: 10.1016/j.joen.2008.03.009

Google Scholar

[23] M. Aeinehchi, B. Eslami, M. Ghanbariha, and A.S. Saffar, Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-capping agents in human teeth: a preliminary report, Int. Endod. J. 36 3 (2003) 225–235.

DOI: 10.1046/j.1365-2591.2003.00652.x

Google Scholar

[24] J. Camilleri, Characterization of hydration products of mineral trioxide aggregate, Int. Endod. J. 41 5 (2008) 408–17.

DOI: 10.1111/j.1365-2591.2007.01370.x

Google Scholar

[25] J. Camilleri, Hydration mechanisms of mineral trioxide aggregate, Int. Endod. J. 40 6 (2007) 462–470.

DOI: 10.1111/j.1365-2591.2007.01248.x

Google Scholar

[26] Y.L. Lee, B.S. Lee, F.H. Lin, A.Y. Lin, W.H. Lan, and C. P. Lin, Effects of physiological environments on the hydration behavior of mineral trioxide aggregate, Biomaterials. 25 5 (2004) 787–793.

DOI: 10.1016/s0142-9612(03)00591-x

Google Scholar

[27] M.A.H. Duarte, A.C.C. De Oliveira Demarchi, J.C. Yamashita, M.C. Kuga, and S. De Campos Fraga, pH and calcium ion release of 2 root-end filling materials, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 95 3 (2003) 345–347.

DOI: 10.1067/moe.2003.12

Google Scholar

[28] M. Kuratate, Y. Shigetani, L. Han, T. Okiji, Compositional change of mineral trioxide aggregate immersed in water: alteration of elemental distribution in the surface layer, Japanese J. Conserv. Dent. 52 4 (2009) 348–354.

Google Scholar

[29] T. Okiji and K. Yoshiba, Reparative dentinogenesis induced by mineral trioxide aggregate: a review from the biological and physicochemical points of view, Int. J. Dent. 2009 (2009)1–12.

DOI: 10.1155/2009/464280

Google Scholar