[1]
A.S. Al-Hiyasat, K.M. Barrieshi-Nusair, and M.A. Al-Omari, The radiographic outcomes of direct pulp-capping procedures performed by dental students: A retrospective study, J. Am. Dent. Assoc. 137 12 (2006) 1699–1705.
DOI: 10.14219/jada.archive.2006.0116
Google Scholar
[2]
C. Barthel, B. Rosenkranz, A. Leuenberg, and J. Roulet, Pulp capping of carious exposures: treatment outcome after 5 and 10 years: a retrospective study, J. Endod. 26 9 (2000) 525–528.
DOI: 10.1097/00004770-200009000-00010
Google Scholar
[3]
J. Camilleri, The chemical composition of mineral trioxide aggregate, J. Conserv. Dent. 11 4 (2008) 141.
DOI: 10.4103/0972-0707.48834
Google Scholar
[4]
M. Torabinejad, C.U. Hong, F. McDonald, and T.R.P. Ford, Physical and chemical properties of a new root-end filling material, J. Endod. 21 7 (1995) 349–353.
DOI: 10.1016/s0099-2399(06)80967-2
Google Scholar
[5]
K. Ida, T. Maseki, M. Yamasaki, S. Hirano, and H. Nakamura, The pH values of pulp-capping agents, J. Endod. 15 8 (1989) 365–368.
DOI: 10.1016/s0099-2399(89)80074-3
Google Scholar
[6]
O. Téclès, P. Laurent, V. Aubut, and I. About, Human tooth culture: a study model for reparative dentinogenesis and direct pulp capping materials biocompatibility, J. Biomed. Mater. Res. - Part B Appl. Biomater. 85 1 (2008) 180–187.
DOI: 10.1002/jbm.b.30933
Google Scholar
[7]
D.E. Witherspoon, Vital pulp therapy with new materials: new directions and treatment perspectives-permanent teeth, J. Endod. 34 7 (2008) 25–28.
DOI: 10.1016/j.joen.2008.02.030
Google Scholar
[8]
L. Sawicki, C.H. Pameijer, K. Emerich, and B. Adamowicz-Klepalska, Histological evaluation of mineral trioxide aggregate and calcium hydroxide in direct pulp capping of human immature permanent teeth, Am. J. Dent. 21 4 (2008) 262–266.
Google Scholar
[9]
T. J. Hilton et al., Comparison of Ca(OH)2 with MTA for direct pulp capping, J. Dent. Res. 92 7 (2013) S16–S22.
Google Scholar
[10]
S. Asgary, F. Akbari Kamrani, and S. Taheri, Evaluation of antimicrobial effect of MTA, calcium hydroxide, and cement, Iran. Endod. J. 2 3 (2007) 105–9.
Google Scholar
[11]
J. Camilleri, F.E. Montesin, L. Di Silvio, and T.R.P. Ford, The chemical constitution and biocompatibility of accelerated portland cement for endodontic use, Int. Endod. J. 38 11 (2005) 834–842.
DOI: 10.1111/j.1365-2591.2005.01028.x
Google Scholar
[12]
J. Camilleri, F.E. Montesin, K. Brady, R. Sweeney, R.V. Curtis, and T.R.P. Ford, "The constitution of mineral trioxide aggregate, Dent. Mater. 21 4 (2005) 297–303.
DOI: 10.1016/j.dental.2004.05.010
Google Scholar
[13]
I. Primathena, D. Nurdin, R. Adang, and A. Cahyanto, Composition and functional groups evaluation of indonesian grey portland cement as material for dental application, Key Eng. Mater. 782 (2018) 256–261.
DOI: 10.4028/www.scientific.net/kem.782.256
Google Scholar
[14]
A.H. Hammad, M.A. Marzouk, and H.A. ElBatal, The effects of Bi2O3 on optical, FT-IR and thermal properties of SrO-B2O3 glasses, Silicon. 8 1 (2016) 123–131.
DOI: 10.1007/s12633-015-9283-x
Google Scholar
[15]
Q. Li and N.J. Coleman, The hydration chemistry of ProRoot MTA, Dent. Mater. J. 34 4 (2015) 458–65.
Google Scholar
[16]
S. Dahiya, A.S. Maan, R. Punia, R.S. Kundu, and S. Murugavel, Physical, optical and structural properties of xLi2O-(50–x)Bi2O3-10ZnO-40B2O3 glasses, Trans. Indian Ceram. Soc. 71 4 (2012) 225–228.
DOI: 10.1080/0371750x.2013.772736
Google Scholar
[17]
E.A. Bortoluzzi, N.J. Broon, C.M. Bramante, R.B. Garcia, I.G. de Moraes, and N. Bernardineli, Sealing ability of MTA and radiopaque portland cement with or without calcium chloride for root-end filling, J. Endod. 32 9 (2006) 897–900.
DOI: 10.1016/j.joen.2006.04.006
Google Scholar
[18]
M. Hosseinzade, R.K. Soflou, A. Valian, and H. Nojehdehian, Physicochemical properties of MTA, CEM, hydroxyapatite and nano hydroxyapatite-chitosan dental cements, Biomed. Res. 27 2 (2016) 442–448.
Google Scholar
[19]
M. Kuratate, K. Yoshiba, Y. Shigetani, N. Yoshiba, H. Ohshima, and T. Okiji, Immunohistochemical analysis of nestin, osteopontin, and proliferating cells in the reparative process of exposed dental pulp capped with mineral trioxide aggregate, J. Endod. 34 8 (2008) 970–974.
DOI: 10.1016/j.joen.2008.03.021
Google Scholar
[20]
T.R.P. Ford, M. Torabinejad, H.R. Abedi, L.K. Bakland, and S.P. Kariyawasam, Using mineral trioxide aggregate as a pulp-capping material, J. Am. Dent. Assoc. 127 10 (1996) 1491–1494.
DOI: 10.14219/jada.archive.1996.0058
Google Scholar
[21]
I.M. Faraco and R. Holland, Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement, Dent. Traumatol. 17 4 (2001)163–166.
DOI: 10.1034/j.1600-9657.2001.170405.x
Google Scholar
[22]
K.S. Min et al., Effect of mineral trioxide aggregate on dentin bridge formation and expression of dentin sialoprotein and heme oxygenase-1 in human dental pulp, J. Endod. 34 6 (2008) 666–70.
DOI: 10.1016/j.joen.2008.03.009
Google Scholar
[23]
M. Aeinehchi, B. Eslami, M. Ghanbariha, and A.S. Saffar, Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-capping agents in human teeth: a preliminary report, Int. Endod. J. 36 3 (2003) 225–235.
DOI: 10.1046/j.1365-2591.2003.00652.x
Google Scholar
[24]
J. Camilleri, Characterization of hydration products of mineral trioxide aggregate, Int. Endod. J. 41 5 (2008) 408–17.
DOI: 10.1111/j.1365-2591.2007.01370.x
Google Scholar
[25]
J. Camilleri, Hydration mechanisms of mineral trioxide aggregate, Int. Endod. J. 40 6 (2007) 462–470.
DOI: 10.1111/j.1365-2591.2007.01248.x
Google Scholar
[26]
Y.L. Lee, B.S. Lee, F.H. Lin, A.Y. Lin, W.H. Lan, and C. P. Lin, Effects of physiological environments on the hydration behavior of mineral trioxide aggregate, Biomaterials. 25 5 (2004) 787–793.
DOI: 10.1016/s0142-9612(03)00591-x
Google Scholar
[27]
M.A.H. Duarte, A.C.C. De Oliveira Demarchi, J.C. Yamashita, M.C. Kuga, and S. De Campos Fraga, pH and calcium ion release of 2 root-end filling materials, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 95 3 (2003) 345–347.
DOI: 10.1067/moe.2003.12
Google Scholar
[28]
M. Kuratate, Y. Shigetani, L. Han, T. Okiji, Compositional change of mineral trioxide aggregate immersed in water: alteration of elemental distribution in the surface layer, Japanese J. Conserv. Dent. 52 4 (2009) 348–354.
Google Scholar
[29]
T. Okiji and K. Yoshiba, Reparative dentinogenesis induced by mineral trioxide aggregate: a review from the biological and physicochemical points of view, Int. J. Dent. 2009 (2009)1–12.
DOI: 10.1155/2009/464280
Google Scholar