Prediction of Grain Size during Hot Forging of SCR420HB Using a Phenomenological Model

Article Preview

Abstract:

The material constants of a phenomenological model for predicting the grain size evolution during hot deformation are determined using first and second stages of a hot forging process. The constants including initial grain size exponent, strain exponent, strain rate exponent and dynamic recrystallization activation energy for SCR420HB bearing steel were obtained through finite element optimization technique introduced by the same authors in literature. In the optimization, the error between the experimental and predicted grain sizes at some sample points were minimized by adjusting the material constants as the design variables. The predicted grain size after the third stage using the optimized material constants was compared with the experimental values to validate the obtained material constants. The comparison showed that the model predicts the grain size with tolerable error when the obtained material constants are applied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.H. Jung, H.W. Lee, Y.T. Im, Int. J. Mech. Sci. 52 (2010) 1136–1144.

DOI: 10.1016/j.ijmecsci.2009.09.010

Google Scholar

[2] M. Irani, M. Joun, Comput. Mater. Sci. 142 (2018) 178–184.

DOI: 10.1016/j.commatsci.2017.10.007

Google Scholar

[3] M Irani, MS Joun - Proceedings of the Korean Society for Technology of Plasticity Conference, 2017 in: South Korea, 2017: p.91–92.

Google Scholar

[4] F. Chen, Z. Cui, J. Chen, Manuf. Rev. 1 (2014) 6.

DOI: 10.1051/mfreview/2014006

Google Scholar

[5] H. Hallberg, Metals. 1 (2011) 16–48.

DOI: 10.3390/met1010016

Google Scholar

[6] H. Matsumoto, V. Velay, J. Alloys Compd. 708 (2017) 404–413.

DOI: 10.1016/j.jallcom.2017.02.285

Google Scholar

[7] Y.C. Lin, Y.-X. Liu, M.-S. Chen, M.-H. Huang, X. Ma, Z.-L. Long, Mater. Des. 99 (2016) 107–114.

DOI: 10.1016/j.matdes.2016.03.050

Google Scholar

[8] M Irani, S.G. Lim, M.S. Joun, M Irani, SG Lim, MS Joun - Proceedings of the Korean Society for Technology of Plasticity Conference, 2018: p.140–141.

Google Scholar

[9] M. Irani, S. Lim, M. Joun, J. Mater. Res. Technol. (2018).

DOI: 10.1016/j.jmrt.2018.11.007

Google Scholar

[10] M. Irani, M.S. Joun - Proceedings of the Korean Society for Technology of Plasticity Conference, 2017: p.122–123.

Google Scholar

[11] J.S. Chou, A.D. Pham, Inf. Sci. 399 (2017) 64–80.

DOI: 10.1016/j.ins.2017.02.051

Google Scholar

[12] M. Joun, J.G. Eom, M.C. Lee, Mech. Mater. 40 (2008) 586–593.

DOI: 10.1016/j.mechmat.2007.11.006

Google Scholar

[13] M.S. Joun, H.G. Moon, I.S. Choi, M.C. Lee, B.Y. Jun, Tribol. Int. 42 (2009) 311–319.

DOI: 10.1016/j.triboint.2008.06.012

Google Scholar

[14] C. Garcı́a de Andrés, M.. Bartolomé, C. Capdevila, D. San Martı́n, F.. Caballero, V. López, Mater. Charact. 46 (2001) 389–398.

DOI: 10.1016/S1044-5803(01)00142-5

Google Scholar

[15] HyperStudy user manual. Troy (MI): Altair Engineering Inc.; 2009., (n.d.).

Google Scholar