Evaluation of Fatigue Behavior of Silicon Carbide Particles Reinforced with Magnesium Alloy Metal Matrix Composites

Article Preview

Abstract:

To evaluate the fatigue behaviors of AZ61 magnesium alloy with different weight percentages (0, 1 and 2) of silicon carbide particles (SiCp) were fabricated through gravity casting method. In addition, stress-controlled low-cycle fatigue test of SiCp reinforced magnesium alloys AZ61 were performed in ambient atmosphere at room temperature using ASTM 606 standard specimens. Fatigue measurement results proved, that the fatigue life of SiCp reinforced metal matrix composites (MMCs) decreased with increasing SiCp content. However, the results of the cyclic ductility decreased owing to the presence of significant amount of SiCp, which induces the brittleness of fatigue properties. This is probably occurring because of increasing the SiCp content in the matrix causes highly localized plastic strain. In addition, a high concentration of stress results around the reinforcements particles regions initiate the crack leading to rapid failure of MMCs. Therefore, the SiCp did not act as a stress reliever and it behaves in a brittle manner for the crack propagation through the particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-118

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Kaczmar, K. Pietrzak, and W. Wlosiński, J. Mater. Process. Technol., vol. 106, no. 1–3, pp.58-67, (2000).

Google Scholar

[2] M. Gupta, Q.B. Nguyen, A. M. Hamouda, K. S. Tun, and N. J. Minh, Metals (Basel)., vol. 2, no. 3, p.313–328, (2012).

Google Scholar

[3] M. Hrabovsky, D.J. Jeanmonod, Rebecca, K. et al. Suzuki, and M. Hrabovsky, Intech open, vol. 2, p.64, (2018).

Google Scholar

[4] V. Sivananth, S. Vijayarangan, and N. Rajamanickam, Mater. Sci. Eng. A, vol. 597, p.304–313, (2014).

Google Scholar

[5] A.N. Chamos, S.G. Pantelakis, G.N. Haidemenopoulos, and E. Kamoutsi, Fatigue Fract. Eng. Mater. Struct., vol. 31, no. 9, p.812–821, (2008).

Google Scholar

[6] S. Fintová and L. Kunz, J. Mech. Behav. Biomed. Mater., vol. 42, p.219–228, (2015).

Google Scholar

[7] A. Němcová, J. Zapletal, M. Juliš, and T. Podrábský, Mater. Eng., vol. 16, no. 4, (2009).

Google Scholar

[8] A.R. Vaidya and J.J. Lewandowski, Mater. Sci. Eng. A, vol. 220, no. 1–2, p.85–92, (1996).

Google Scholar

[9] S.J. Huang and A.N. Ali, Mater. Sci. Eng. A, vol. 711, no. November 2017, p.670–682, (2018).

Google Scholar

[10] H.A. Hassan and J.J. Lewandowski, Mater. Sci. Eng. A, vol. 600, p.188–194, (2014).

Google Scholar

[11] 1I. Uygur and M.K. Külekci, Turkish J. Eng. Environ. Sci., vol. 26, no. 3, p.265–274, (2002).

Google Scholar

[12] W. Li, Z.H. Chen, D. Chen, J. Teng, and C. Fan, Mater. Sci. Eng. A, vol. 527, no. 29–30, p.7631–7637, (2010).

Google Scholar

[13] A. Němcová, P. Skeldon, G. E. Thompson, S. Morse, J. Čížek, and B. Pacal, Corros. Sci., vol. 82, p.58–66, (2014).

DOI: 10.1016/j.corsci.2013.12.019

Google Scholar

[14] D.P. Myriounis, E. Z. Kordatos, S. T. Hasan, and T. E. Matikas, Strain, vol. 47, no. SUPPL. 1, p.619–627, (2011).

Google Scholar