[1]
AK steel corporation, Carbon Steel Price Book, (2015).
Google Scholar
[2]
Takahashi M. Development of High Strength Steels for Automobiles. Nippon steel technical report, Vol. 88, pp.2-7, (2003).
Google Scholar
[3]
Murakami Y., Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier science, (2017).
Google Scholar
[4]
Frith P. H., Fatigue tests on rolled alloy steels made in electric and open-hearth furnaces, Vol. 50, pp.129-130, (1954).
Google Scholar
[5]
Murakami Y., Endo M., Effects of defects, inclusions and inhomogeneities on fatigue strength, Int. J. Fatigue, Vol. 16, No. 3, pp.163-182, (1994).
DOI: 10.1016/0142-1123(94)90001-9
Google Scholar
[6]
Shiozawa K., Morii Y., Nishino S., Lu L., Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime, Int. J. Fatigue, Vol. 28, No. 11, pp.1521-1532, (2006).
DOI: 10.1016/j.ijfatigue.2005.08.015
Google Scholar
[7]
Li W., Sakai T., Li Q., Lu L. T., Wang P., Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel, Int. J. Fatigue, Vol. 32, No. 7, pp.1096-1107, (2010).
DOI: 10.1016/j.ijfatigue.2009.12.008
Google Scholar
[8]
Mizobe K., Honda T., Koike H., Santos E. C., Shibukawa T., Kida K, Relationship between repeatedly quenching and fisheye cracks around TiN and Al2O3 nclusions in high carbon bearing steel, Mater. Res. Innov. No. 18, pp. S1-60-S1-65 (2014).
DOI: 10.1179/1432891713Z.000000000355
Google Scholar
[9]
Mizobe K., Koike H., Kida K, Influence of Thrice-Induction-Heating and Once-Quenching on Fatigue Strength of SAE52100 Steel. Vol 893, pp.415-418 (2014).
DOI: 10.4028/www.scientific.net/AMR.893.415
Google Scholar
[10]
Qian G., Hong Y., Zhou C, Investigation of high cycle and Very-High-Cycle Fatigue behaviors for a structural steel with smooth and notched specimens, Eng. Fail. Anal., Vol. 17, No. 7-8, pp.1517-1525, (2010).
DOI: 10.1016/j.engfailanal.2010.06.002
Google Scholar