[1]
A. Pramono, L. Kollo, R.Veinthala, Hot and cold regions during accumulative roll bonding of Al/Al2O3 nanofibre composites,, Material Engineering,Vol. 65, 2, 132–137, (2016).
DOI: 10.3176/proc.2016.2.12
Google Scholar
[2]
A.U. Gucwa, I. Bednarczyk, M. Jabłonska and K. Rodak, Deformation microstructures in metallic materials after severe plastic deformation by rolling with cyclic movement of rolls, Vol.130, 20-24, (2015).
DOI: 10.12693/aphyspola.130.975
Google Scholar
[3]
M. Abdolahi Sereshki, B. Azad, E. Borhani, Corrosion behavior of Al-2wt%Cu Alloy processed by accumulative roll bonding (ARB) process,, Ultrafine Grained and Nanostructured Materials, Vol.49, 22-28, (2016).
DOI: 10.4149/km_2016_1_9
Google Scholar
[4]
G. Faraji, M. Mosavi Mashhadi, S. Joo and H. Kim, The role of friction in tubular channel angular pressing,, Advanced Material Science, 12-18, (2012).
Google Scholar
[5]
M. Richert, J. Richert a, A. Hotloś, W. Pachla, J. Skiba, Structure and properties of Copper deformed by severe plastic deformation methods,, Materials and Manufacturing Engineering Vol.44, 50-56, (2012).
Google Scholar
[6]
N. Haghdadi, A.Zarei-Hanzaki, D.Abou-Ras, M.H. Maghsoudi, A.Ghorbani, M. Kawasaki, An investigation into the homogeneity of microstructure, strain pattern and hardness of pure aluminum processed by accumulative back extrusion,, Materials Science & Engineering, 595, 179–187, (2014).
DOI: 10.1016/j.msea.2013.11.077
Google Scholar
[7]
H. Alihosseini, G. Faraji, A.F. Dizaji, K. Dehghani, Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE),, Materials Characterization, Vol. 68, 14-21, (2012).
DOI: 10.1016/j.matchar.2012.03.004
Google Scholar
[8]
G. Faraji, M. Mosavi Mashhadi & H. Seop Kim, Microstructural evolution of UFG magnesium alloy produced by Accumulative Back Extrusion (ABE),, Materials and Manufacturing Processes, Vol. 27, 267–272, (2012).
DOI: 10.1080/10426914.2011.577880
Google Scholar
[9]
C. Kwan, Z. Wang, The cyclic deformation behavior of Severe Plastic Deformation (SPD) metals and the influential factors,, Metals,Vol. 2, 41-55, (2012).
DOI: 10.3390/met2010041
Google Scholar
[10]
A. babaei, M.M. Mashhadi, Tubular pure copper grain refining by tube cyclic extrusion–compression (TCEC) as a severe plastic deformation technique,, Natural Science: Materials International, Vol. 24, 623–630, (2014).
DOI: 10.1016/j.pnsc.2014.10.009
Google Scholar
[11]
V. Geamăn, D. Frunză, I. Radomir, M. Alin Pop, Numerical investigation of strain distribution during Cyclic Expansion Extrusion (CEE),, Vol.77, 160-168, (2013).
Google Scholar
[12]
J. Zrník, Tomáš Kovarík, M. Cieslar, CGP forming method TI produce ultrafine grained structure in aluminium,, Metal, Vol. 3, 1-8, (2008).
Google Scholar
[13]
R.Z. Valiev, N.A. Enikeev, M.Yu. Murashkin, V.U. Kazykhanov, X.Sauvage, On the origin of extremely high strength of ultrafine–grained Al alloys produced by severe plastic deformation,, Vol. 1, 1-10, (2010).
DOI: 10.1016/j.scriptamat.2010.07.014
Google Scholar
[14]
M. Kawasaki, B.Ahn, P. Kumar, J. Jang, T.G. Langdon, Nano- and micro-mechanical properties of ultrafine-grained materials processed by severe plastic deformation techniques,, Advanced Engineering Materials, (2016).
DOI: 10.1002/adem.201600578
Google Scholar
[15]
M. Richert, H. Petryk, s. Stupkiewicz, Grain refinement in AlMgSi alloy during Cyclic Extrusion-Compression: experiment and modeling,, Archives of Metallurgy and Materials, Vol. 52, 1-11, (2007).
Google Scholar
[16]
V. Geamăn, D. Frunză, I. Radomir, M. Alin Pop, Numerical simulation of cyclic extrusion process for aluminum alloy 6060,, Vol.77, 160-168, (2015).
Google Scholar
[17]
B. Srinivas, Ch. Srinivasu, B. Mahesh, M. Aqheel, A review on severe plastic deformation,, Advanced Materials Manufacturing & Characterization, Vol. 3, 291-296, (2013).
DOI: 10.11127/ijammc.2013.02.053
Google Scholar
[18]
G. Faraji, M. Mosavi Mashhadi, H. Seop Kim, Microstructural Evolution of UFG magnesium alloy produced by Accumulative Back Extrusion (ABE),, Materials and Manufacturing Processes, Vol. 27, 267–272, (2012).
DOI: 10.1080/10426914.2011.577880
Google Scholar
[19]
N. Haghdadi, A. Zarei-Hanzaki, D. Abou-Ras, M. H.Maghsoudi, A. Ghorbani, M. Kawasaki, An investigation into the homogeneity of microstructure, strain pattern and hardness of pure aluminum processed by accumulative back extrusion,, Materials Science & Engineering, Vol. 595, 179–187, (2014).
DOI: 10.1016/j.msea.2013.11.077
Google Scholar
[20]
N. Pardis, B. Talebanpour, R. Ebrahimi, S. Zomorodian, Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic extrusion-compression (CEC),, Materials Science and Engineering Vol. 528, 7537– 7540, (2011).
DOI: 10.1016/j.msea.2011.06.059
Google Scholar
[21]
M. Richert, Features of cyclic extrusion compression method, Structure & Materials Properties, Solid State Phenomena Vol. 114, 19- 28, (2006).
DOI: 10.4028/www.scientific.net/ssp.114.19
Google Scholar
[22]
M.H. Farshidi, M. Kazeminezhad, H. Miyamoto, Severe plastic deformation of 6061 aluminum alloy tube with pre and post heat treatments,, Materials Science & Engineering Vol. 563, 60–67, (2013).
DOI: 10.1016/j.msea.2012.11.025
Google Scholar