Effect of Inorganic Doping on the Thermoelectric Behavior of Polyaniline Nanocomposites

Article Preview

Abstract:

Polyaniline (PANI) has been considered for thermoelectric (T.E) applications due to its facile preparation methods, easy doping-dedoping processes and its environmental stability. Like other conducting polymers (CPs), it has low thermal conductivity (usually below 1 Wm-1K-1) which is favorable for T.E applications, however studies have shown that it still suffers from low power factors as a result of low electrical conductivity. For this reason, PANI has been compounded with other materials such as polymers, inorganic nanoparticles and carbon nanoparticles to enhance its electrical conductivity, power factors (PF) and ultimately zT value.This work is focused on the synthesis and characterization of n-type polyaniline nanocomposites doped with reduced graphene oxide (rGO). The rGO was prepared through oxidation of graphite and subsequent reduction and incorporated into polyaniline through in situ polymerization and the resulting nanocomposites were characterized. Addition of rGO resulted in enhancement of the electrical conductivity of polyaniline from 10-3 S/cm to 10-1 S/cm which is two orders of magnitude higher. This contributed to the enhanced PF, an indication that thermoelectric behavior of conducting polymers can be boosted through compounding with inorganic materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-207

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. S. Dresselhaus, and I. L. Thomas, Alternative energy technologies, Nature 414 (2001) 332-337.

Google Scholar

[2] J. R. Bartels, B. P. Michael, and K. O. Norman, An economic survey of hydrogen production from conventional and alternative energy sources, Int. J. of hydrogen energy 35 (2010) 8371-8384.

DOI: 10.1016/j.ijhydene.2010.04.035

Google Scholar

[3] A. A. El-Moneim, N. Kumagai, K. Asami, and K. Hashimoto, New nanocrystalline manganese-molybdenum-tin oxide anodes for oxygen evolution in seawater electrolysis, ECS Trans. 1 (2006) 491-497.

DOI: 10.1149/1.2215532

Google Scholar

[4] A. A. El-Moneim, Mn-Mo-W-oxide anodes for oxygen evolution during seawater electrolysis for hydrogen production: effect of repeated anodic deposition, Int. J. of Hydrogen Energy 36 (2011) 13398-13406.

DOI: 10.1016/j.ijhydene.2011.07.100

Google Scholar

[5] M. Culebras, C. Gómez, and A. Cantarero, Review on polymers for thermoelectric applications, Materials 7 (2014) 6701-6732.

DOI: 10.3390/ma7096701

Google Scholar

[6] L. Wang, Y. Liu, Z. Zhang, B. Wang, J. Qiu, D. Hui, and S. Wang, Polymer composites-based thermoelectric materials and devices, Composites Part B: Engineering 122 (2017) 145-155.

DOI: 10.1016/j.compositesb.2017.04.019

Google Scholar

[7] G. Chen, W. Xu, and D. Zhu, Recent advances in organic polymer thermoelectric composites." Journal of Materials Chemistry C 5 (2017) 4350-4360.

Google Scholar

[8] Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, and F. Wei, A three‐dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors, Advanced materials 22 (2010) 3723-3728.

DOI: 10.1002/adma.201001029

Google Scholar

[9] M. Gamil, O. Tabata, K. Nakamura, A. M. El-Bab, A. A. El-Moneim, Investigation of a New High Sensitive Micro-Electromechanical Strain Gauge Sensor based on Graphene Piezo resistivity, Key Engineering Materials 605 (2014) 207-210.

DOI: 10.4028/www.scientific.net/kem.605.207

Google Scholar

[10] M. Gamil, H. Nageh, I. Bakrey, S. Sayed, O. Tabata, K. Nakamura, A. M. F. El-Bab, A. A. El-Moneim, Graphene-based strain gauge on a flexible substrate, Sensors and Materials 26 (2014) 699–709.

DOI: 10.1108/sr-07-2015-0114

Google Scholar

[11] K. Xu, G. Chen, and D. Qiu, Convenient construction of poly (3, 4-ethylenedioxythiophene) –graphene pie-like structure with enhanced thermoelectric performance, Journal of Materials Chemistry A 1 (2013) 12395-12399.

DOI: 10.1039/c3ta12691a

Google Scholar

[12] D. Kim, Y. Kim, K. Choi, J. C. Grunlan, and C. Yu, Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3, 4-ethylenedioxythiophene) poly (styrene sulfonate), ACS nano 4 (2009) 513-523.

DOI: 10.1021/nn9013577

Google Scholar

[13] L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, and L. Chen, Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method, Journal of Materials Chemistry A 2 (2014) 11107-11113.

DOI: 10.1039/c4ta01541j

Google Scholar

[14] Q. Yao, Q. Wang, L. Wang, and L. Chen, Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering, Energy & Environmental Science 7 (2014) 3801-3807.

DOI: 10.1039/c4ee01905a

Google Scholar

[15] S. Han, W. Zhai, G. Chen, and X. Wang, Morphology and thermoelectric properties of graphene nanosheets enwrapped with polypyrrole, RSC Advances 4 (2014) 29281-29285.

DOI: 10.1039/c4ra04003a

Google Scholar

[16] L. Liang, C. Gao, G. Chen, and C. Y. Guo, Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites, Journal of Materials Chemistry C 4 (2016) 526-532.

DOI: 10.1039/c5tc03768a

Google Scholar

[17] M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, and S. Goswami, Reduced graphene oxide-polyaniline composites—synthesis, characterization and optimization for thermoelectric applications, RSC Advances 5 (2015) 31039-31048.

DOI: 10.1039/c5ra01794g

Google Scholar

[18] J. Xiang and L. T. Drzal, Templated growth of polyaniline on exfoliated graphene nanoplates (GNP) and its thermoelectric properties, Polymer 53 (2012) 4202–4210.

DOI: 10.1016/j.polymer.2012.07.029

Google Scholar

[19] Y. Lu, Y. Song and F. Wang, Thermoelectric properties of graphene nanosheets-modified polyaniline hybrid nanocomposites by an in situ chemical polymerization, Materials Chemistry and Physics 138 (2013) 238-244.

DOI: 10.1016/j.matchemphys.2012.11.052

Google Scholar

[20] R. A. Schlitz, F. G. Brunetti, A. M. Glaudell, P. L. Miller, M. A. Brady, C. J. Takacs, C. J. Hawker, and M. L. Chabinyc, Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications, Advanced materials, 26 (2014) 2825-2830.

DOI: 10.1002/adma.201304866

Google Scholar

[21] B. Russ, M. J. Robb, F. G. Brunetti, P. L. Miller, E. E. Perry, S. N. Patel, V. Ho, W. B. Chang, J. J. Urban, M. L. Chabinyc, and C. J. Hawker, Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design, Advanced Materials, 26 (2014): 3473-3477.

DOI: 10.1002/adma.201306116

Google Scholar

[22] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles, Carbon 42 (2004) 2929-2937.

DOI: 10.1016/s0008-6223(04)00444-0

Google Scholar

[23] E. C. Gomes, and M. A. S. Oliveira, Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines, Am. J. Polym. Sci, 2 (2012) 5-13.

DOI: 10.5923/j.ajps.20120202.02

Google Scholar

[24] M. Mitra, K. Chatterjee, K. Kargupta, S. Ganguly and D. Banerjee, Reduction of graphene oxide through a green and metal-free approach using formic acid, Diamond Related Materials, 37 (2013) 74–79.

DOI: 10.1016/j.diamond.2013.05.003

Google Scholar