Determination of Charge Coefficient of Piezoelectric Films Using a Combined Finite Element Model and Dynamic Loading Technique

Article Preview

Abstract:

Accurate determination of piezoelectric properties such as piezoelectric charge coefficients (d33) is an essential step in the design process of sensors and actuators using piezoelectric effect. In this study, a cost-effective and accurate method based on dynamic loading technique was proposed to determine the piezoelectric charge coefficient d33. Finite element analysis (FEA) model was developed in order to estimate d33 and validate the obtained values with experimental results. The experiment was conducted on a piezoelectric disc with a known d33 value. The effect of measuring boundary conditions, substrate material properties and specimen geometry on measured d33 value were conducted. The experimental results reveal that the determined d33 coefficient by this technique is accurate as it falls within the manufactures tolerance specifications of PZT-5A piezoelectric film d33. Further, obtained simulation results on fibre reinforced and particle reinforced piezoelectric composite were found to be similar to those that have been obtained using more advanced techniques. FE-results showed that the measured d33 coefficients depend on measuring boundary condition, piezoelectric film thickness, and substrate material properties. This method was proved to be suitable for determination of d33 coefficient effectively for piezoelectric samples of any arbitrary geometry without compromising on the accuracy of measured d33.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

229-242

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Falconi, Piezoelectric nanotransducers, Nano Energy. 59 (2019) 730–744.

DOI: 10.1016/j.nanoen.2019.03.027

Google Scholar

[2] S.S. Won, J. Lee, V. Venugopal, D. Kim, J. Lee, I.W. Kim, A.I. Kingon, S. Kim, S.S. Won, J. Lee, V. Venugopal, D. Kim, J. Lee, vibrational energy harvester applications, 232908 (2016) 0–5.

DOI: 10.1063/1.4953623

Google Scholar

[3] A. Uranga, J. Verd, N. Barniol, Microelectronic Engineering CMOS – MEMS resonators : From devices to applications, Microelectron. Eng. 132 (2015) 58–73.

DOI: 10.1016/j.mee.2014.08.015

Google Scholar

[4] H.J. Kim, Y.J. Kim, High performance flexible piezoelectric pressure sensor based on CNTs-doped 0–3 ceramic-epoxy nanocomposites, Mater. Des. 151 (2018) 133–140.

DOI: 10.1016/j.matdes.2018.04.048

Google Scholar

[5] T.-R. Hsu, MEMS and Microsystems: Design, Manufacture, and Nanoscale Engineering, John Wiley & Sons, (2008).

Google Scholar

[6] D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys. 61 (1998) 1267–1324.

DOI: 10.1088/0034-4885/61/9/002

Google Scholar

[7] F. Guido, M. Teresa, F. Guido, V. Mastronardi, D. Desmaele, G. Epifani, L. Algieri, M.D. Vittorio, Piezoelectric MEMS vibrational energy harvesters : Advances and outlook Microelectronic Engineering Piezoelectric MEMS vibrational energy harvesters : Advances and outlook, Microelectron. Eng. (2017).

DOI: 10.1016/j.mee.2017.10.005

Google Scholar

[8] C. Chao, Z. Wang, W. Zhu, Measurement of longitudinal piezoelectric coefficient of lead zirconate titanate thin/thick films using a novel scanning Mach-Zehnder interferometer, Thin Solid Films. 493 (2005) 313–318.

DOI: 10.1016/j.tsf.2005.08.005

Google Scholar

[9] J. Fialka, P. Benes, Comparison of Methods for the Measurement of Piezoelectric Coefficients, IEEE Trans. Instrum. Meas. 62 (2013) 1047–1057.

DOI: 10.1109/tim.2012.2234576

Google Scholar

[10] G.-T. Park, J.-J. Choi, J. Ryu, H. Fan, H.-J. Kim, Measurement of Piezoelectric Coefficients of Lead Zirconate Titanate Thin Films by Strain-Monitoring Pneumatic Loading Method, 2002.

DOI: 10.1063/1.1487901

Google Scholar

[11] A. Gomez, M. Gich, A. Carretero-Genevrier, T. Puig, X. Obradors, Piezo-generated charge mapping revealed through direct piezoelectric force microscopy, Nat. Commun. 8 (2017).

DOI: 10.1038/s41467-017-01361-2

Google Scholar

[12] Q. Guo, G.Z. Cao, I.Y. Shen, Measurements of piezoelectric coefficient d33 of lead zirconate titanate thin films using a mini force hammer, J. Vib. Acoust. 135 (2013) 011003.

DOI: 10.1115/1.4006881

Google Scholar

[13] J.E.A. Southin, S.A. Wilson, D. Schmitt, R.W. Whatmore, e31, f determination for PZT films using a conventionald33'meter, J. Phys. Appl. Phys. 34 (2001) 1456.

DOI: 10.1088/0022-3727/34/10/303

Google Scholar

[14] F. Xu, F. Chu, S. Trolier-McKinstry, Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig, 1999.

DOI: 10.1063/1.370771

Google Scholar

[15] Publication and proposed revision of ANSI/IEEE standard 176-1987 ANSI/IEEE standard on piezoelectricity,, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 43 (1996) 717–771.

DOI: 10.1109/tuffc.1996.535477

Google Scholar

[16] Q. Guo, G.Z. Cao, I.Y. Shen, Measurements of Piezoelectric Coefficient d 33 of Lead Zirconate Titanate Thin Films Using a Mini Force Hammer, J. Vib. Acoust. 135 (2013) 011003.

DOI: 10.1115/1.4006881

Google Scholar

[17] K. Lefki, G.J.M. Dormans, Measurement of piezoelectric coefficients of ferroelectric thin films easurement of piezoelectric coefficients of ferroelectric thin films, 1764 (1994).

DOI: 10.1063/1.357693

Google Scholar

[18] P.M. Skeen, G. Lucas, R.G. Forbes, M. Caresta, Brüel & Kjær Pulse Labshop Primer, (n.d.) 57.

Google Scholar

[19] C.A. Gandarilla-Pérez, R. Rodríguez-Ramos, I. Sevostianov, F.J. Sabina, J. Bravo-Castillero, R. Guinovart-Díaz, L. Lau-Alfonso, Extension of Maxwell homogenization scheme for piezoelectric composites containing spheroidal inhomogeneities, Int. J. Solids Struct. 135 (2018) 125–136.

DOI: 10.1016/j.ijsolstr.2017.11.015

Google Scholar

[20] A. Barzegar, D. Damjanovic, N. Setter, The Effect of Boundary Conditions and Sample Aspect Ratio on Apparent d 33 Piezoelectric Coefficient Determined by Direct Quasistatic, 51 (2004) 262–270.

DOI: 10.1109/tuffc.2004.1295405

Google Scholar

[21] L. Parali, I. Şabikoʇlu, M.A. Kurbanov, Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites, Appl. Surf. Sci. 318 (2014) 6–9.

DOI: 10.1016/j.apsusc.2013.10.043

Google Scholar

[22] H.L.W. Chan, J. Unsworth, Simple Model for Piezoelectric Ceramic/Polymer 1-3 Composites Used in Ultrasonic Transducer Applications, IEEE. 36 (1989) 434–441.

DOI: 10.1109/58.31780

Google Scholar

[23] L.E.C. R.E. Newnham, D.P. Skinner, Connectivity and piezoelectric-pyroelectric composites, ELSEVIER. 13 (1978) 525–536.

DOI: 10.1016/0025-5408(78)90161-7

Google Scholar

[24] Z. De-qing, W. Da-wei, Y. Jie, Z. Quan-liang, Structural and Electrical Properties of PZT / PVDF Piezoelectric Nanocomposites Prepared by Cold-Press and Hot-Press Routes *, 25 (2008) 4410–4413.

DOI: 10.1088/0256-307x/25/12/063

Google Scholar

[25] Z.P. Wang, J.K. Nelson, H. Hillborg, S. Zhao, L.S. Schadler, Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models, Compos. Sci. Technol. 76 (2013) 29–36.

DOI: 10.1016/j.compscitech.2012.12.014

Google Scholar

[26] R. Li, J. Zhou, H. Liu, J. Pei, Effect of Polymer Matrix on the Structure and Electric Properties of Piezoelectric Lead, (2017).

Google Scholar

[27] I.I. Babu, Piezoelectric composites : design, fabrication and performance analysis, (2013).

Google Scholar