Study on the Effect of Si-Al Components in Pulverized Coal Ash on Corrosion in Heating Surface of Biomass Boiler

Article Preview

Abstract:

Pulverized coal ash can be used as an additive to reduce corrosion on heating surface of biomass boiler. Biomass ash and pulverized coal ash were mixed and coated on the metal surface for experiment; the results showed that the corrosion rate of the metal decreases by adding pulverized coal ash. With the increase of additive content, the corrosion gradually reduces. The effect of different pulverized coal ash on corrosion is different, but as the proportion of pulverized coal ash increases, the effect tends to be close. When the molar content of (Si+Al)/(Na+K) is about 2 and the ratio of Si/Al is about 1, the pulverized coal ash additive works best.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-94

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Martti Aho and Jaani Silvennoinen: Fuel, Vol. 83 (2004), pp.1299-1305.

Google Scholar

[2] P. Henderson, P. Szakálos, R. Pettersson, C. Andersson and J. Högberg: Materials and Corrosion, Vol. 57 (2007), pp.126-134.

Google Scholar

[3] Sonja Enestam, Dorota Bankiewicz, Johanna Tuiremo and Kari Mäkelä: Fuel, Vol. 104 (2013), pp.294-306.

DOI: 10.1016/j.fuel.2012.07.020

Google Scholar

[4] M.A Uusitalo, P.M.J Vuoristo, T.A Mäntylä: Corrosion Science, Vol. 46 (2004), pp.1311-1331.

Google Scholar

[5] Yanqing Niu, Houzhang Tan and Shi'en Hui: Progress in Energy and Combustion Science, Vol. 52 (2016), pp.1-61.

Google Scholar

[6] Chunjing Yu, Zhun Wang, Bin Gong and Zhongyang Luo: Zhejiang University (Engineering Science), Vol. 48 (2014), pp.2042-2052.

Google Scholar

[7] Yuwu He, Yuchun Li, Hongliang Zhang and Mei Li: Corrosion & Protection, Vol. 36 (2015), pp.1021-1025.

Google Scholar

[8] Britt-Marie Steenari, Anna Lundberg, Helena Pettersson and Magda Wilewska-Bien: Energy & Fuels, Vol. 23 (2009), pp.5655-5662.

DOI: 10.1021/ef900471u

Google Scholar

[9] Yungang Wang, Haidong Ma, Zhiyuan Liang and Heng Chen: Applied Thermal Engineering, Vol. 96 (2016), 9. 76-82.

Google Scholar

[10] Liang Wang, Johan E. Hustad, Øyvind Skreiberg and Geir Skjevrak: Energy Procedia, Vol. 20 (2012), pp.20-29.

Google Scholar

[11] Tomasz Hardy, Wlodzimierz Kordylewski and Krzysztof Mościcki: Journal of Power Technologies, Vol. 93 (2013). pp.37-43.

Google Scholar

[12] Wenzhi Du, Yanqing Niu, Houzhang Tan and Yiming Zhu: Renewable Energy Resources, Vol. 33 (2015), pp.1559-1564.

Google Scholar

[13] Mikko Hupa, Oskar Karlström and Emil Vainio: Proceedings of the Combustion Institute, Vol. 36 (2017), pp.113-134.

Google Scholar

[14] Binshi Xu, Shining Ma and Changqing Li: China Surface Engineering, Vol. 2 (1998), pp.14-18.

Google Scholar

[15] Qingling Zhao, Meijie Wang and Jiansong Zhao: Acta Energiae Solaris Sinica, Vol. 38 (2017), pp.906-912.

Google Scholar

[16] Dongdong Li, Shengyong Liu and Chong Li: Journal of Henan Agricultural University, Vol. 51 (2017), pp.845-851.

Google Scholar

[17] Martti Aho and Eduardo Ferrer: Fuel, Vol. 84 (2005), pp.201-212.

Google Scholar

[18] Liang Wang, Øyvind Skreiberg, Michael Becidan and Hailong Li: Applied Energy, Vol. 162 (2016), pp.1195-1204.

Google Scholar