[1]
J.J. Fuentes, J.A. Rodriguez, E.J. Herrera, Processing of mechanically alloyed aluminum powder: a metallographic study Fuentes, Materials Characterization. 61 (4) (2010) 386-395.
DOI: 10.1016/j.matchar.2010.01.002
Google Scholar
[2]
A. Arockiasamy, P. Wang, M.F. Horstemeyer, S.J. Park, R.M. German, P. Suri, DSC analysis of Al6061 aluminum alloy powder by rapid solidification: eeeffect of additives, Journal of Thermal Analysis and Calorimetry. 100 (1) (2010) 361-366.
DOI: 10.1007/s10973-009-0587-1
Google Scholar
[3]
M.D. Harding, D.R. Bishop, I.W. Donaldson, Surface characterization of shot peened aluminum powder metallurgy alloys, International Journal of Powder Metallurgy (Princeton, New Jersey). 46 (4) (2010) 11-12.
Google Scholar
[4]
I.A. MacAskill, D.P. Bishop, Jr. R.L. Hexemer, I.W. Donaldson, Effects of magnesium, tin and nitrogen on the sintering response of aluminum powder, Journal of Materials Processing Technology. 210 (15) (2010) 2252-2260.
DOI: 10.1016/j.jmatprotec.2010.08.018
Google Scholar
[5]
E. Dos Santos Magalhaes, C.P. Da Silva, A.L.F. Lima, S.M.M. Lima, An alternative approachto thermal analysis using inverse problems in aluminum alloy welding, International Journal of Numerical Methods for Heat & Fluid Flow. 27 (3) (2017) 561-574.
DOI: 10.1108/hff-03-2016-0106
Google Scholar
[6]
Y. Zhang, D. Sun, Microstructures and mechanical properties of steel/aluminum alloy joints welded by resistance spot welding, Journal of Materials Engineering and Performance. 26 (6) (2017) 2649-2662.
DOI: 10.1007/s11665-017-2731-6
Google Scholar
[7]
E.V. Ageev, E. P. Novikov, A. Y. Altukhov, V. P. Tikhomirov, Size distribution of powdered aluminium sample microparticles produced using electroerosion dispersion, International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), Tomsk. (2015) 1-4.
DOI: 10.1109/meacs.2015.7414944
Google Scholar
[8]
R.A. Latypov, N.M. Horyakova, E.V. Ageev, Insight into physicomechanical and tribological properties of copper galvanic coatings formed with the addition of electroerosion copper nanopowder, Russian Journal of Non-Ferrous Metals. 58 (2) (2017) 161–167.
DOI: 10.3103/s106782121702002x
Google Scholar
[9]
R.A. Latypov, E.V. Ageeva, O.V. Kruglyakov, G.R. Latypova, Electroerosion Micro- and Nanopowders for the Production of Hard Alloys, Russian Metallurgy (Metally). 6 (2016) 547–549.
DOI: 10.1134/s0036029516060082
Google Scholar
[10]
E. V. Ageev, E. V. Ageeva, E. P. Novikov, V. P. Tikhomirov, Grain-size composition, shape and morphology study of titanium powder particles produced by electroerosion dispersion, International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), Tomsk. (2015) 1-4.
DOI: 10.1109/meacs.2015.7414943
Google Scholar
[11]
E. V. Ageev A. Yu. Altukhov O. G. Loktionova, E. P. Novikov E. A. Vorobiev, X-Ray microanalysis of sintered nanocomposite materials from tungsten-containing powders, Journal of nano-and electron physics. 8 (3) (2016) 03056-1-03056-3.
DOI: 10.21272/jnep.8(3).03056
Google Scholar
[12]
R.A. Latypov, E.V. Ageeva, G.R. Latypova, Properties of composite electroplating coatings obtained using dispersed waste steel ShKh15, Electrometallurgy. 3 (2019) 14-18.
DOI: 10.1134/s0036029519060144
Google Scholar
[13]
N. Saprykina, A. Saprykin, E. Ibragimov, D. Arkhipova, Process Conditions of Forming the Surface Layer of Aluminum Powder Product by Layer-by-layer Laser Sintering, IOP Conference Series: Materials Science and Engineering. 140 (1) (2016) 012014.
DOI: 10.1088/1757-899x/140/1/012014
Google Scholar