Heat and Mass Transfer in Porous Particle in Thermal Plasma Flow

Article Preview

Abstract:

The paper presents research into heat and mass transfer in agglomerated particles exposed to the thermal plasma flow. The dynamic motion, heating and melting are considered for agglomerated particles. It is shown that the surface temperature of porous particles rather rapidly reaches the value of Tsur>Tmelt starting from the area of their introduction into the plasma flow. This effect is determined by the low conductivity of porous particles and indicates to a great temperature difference between the particle surface and its nucleus. It is shown that hollow particles can be obtained from silica sand treated by thermal plasma at 6700 K and 515 m/s velocity. The particle surface displays no clear defects. According to the analysis of X-ray diffraction patterns, the obtained hollow particles have no diffraction peaks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-183

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. V. Dudina, S. B. Zlobin, N. V. Bulina, A. L. Bychkov, V. N. Korolyuk, V. Yu. Ulianitsky and O. I. Lomovsky, J. Eur. Ceram. Soc. 32 (2012) 815–821.

DOI: 10.1016/j.jeurceramsoc.2011.10.022

Google Scholar

[2] Y. Tan, J. P. Longtin, and S. Sampath, Proc. Intern. Thermal Spray Conf. ITSC-2006, (2006) 240–248.

Google Scholar

[3] Drozhzhev V S, Danilin L D et al. Proc. World of Coal Ash Conf., 11-15 April, Lexington, USA (2005) 115–116.

Google Scholar

[4] Fomenko E V, Anshits N N et al. Doklady Physical Chemistry 435(2) (2010) 202–204.

Google Scholar

[5] V. S. Bessmertnyj, V. P. Krokhin, A. A. Lyashko et al., Glass and Ceram., 8 (2001) 6 – 7.

Google Scholar

[6] K. P. Sreekumar, S. K. Saxena, Y. Kumar et al., J. Phys.: Conf. Ser. 208 (2010) 012117.

Google Scholar

[7] A.M. Hofmeister, A.G. Whittington, M. Pertermann, Contrib. Mineral. Petrol. 158 (2009) 381-400.

Google Scholar

[8] M. Kawashita, N. Matsui, Zh. Li, T. Miyaza, Ions. J Mater Sci: Mater Med., 21 (2010) 1837–1843.

Google Scholar

[9] V.A. Arkhipov, E.A. Kozlov, I.K. Zharova, S.S. Titov, A.S. Usanina, Arabian Journal of Geosciences, 9(2) (2016) 1–10.

Google Scholar

[10] O.P. Solonenko, I.P. Gulyaev, A.V. Smirnov, Journal of Thermal Science and Technology, 6(2) (2011) 219–234.

Google Scholar

[11] V.A. Vlasov, V.V. Shekhovtsov, O.G. Volokitin, G.G. Volokitin, N.K. Skripnikova, A.A. Klopotov, Russian Physics Journal, 61(4) (2018) 708–714.

DOI: 10.1007/s11182-018-1451-1

Google Scholar

[12] I.P. Gulyaev, O.P. Solonenko, Experiments in Fluids, 54(1) (2013) 1432.

Google Scholar

[13] W.E. Ranz, W.R. Marshall, Chem. Eng. Prog., 48(3) (1952) 141-146.

Google Scholar

[14] M. Wang, N. Pan, Materials Science and Engineering, 63 (2008) 1-30.

Google Scholar

[15] V. Shekhovtsov, O. Volokitin, N. Tsvetkov, G. Volokitin, N. Skripnikova, Materials Science Forum. 906 (2017) 131–136.

DOI: 10.4028/www.scientific.net/msf.906.131

Google Scholar

[16] V.V. Shekhovtsov, O.G. Volokitin, V.I. Otmakhov, G.G. Volokitin, N.K. Skripnikova, Glass and Ceram. 75(1-2) (2018) 32–35.

DOI: 10.1007/s10717-018-0023-8

Google Scholar

[17] O.G. Volokitin, V.V. Shekhovtsov, Glass Physics and Chemistry, 44(3) (2018) 251–253.

Google Scholar