[1]
Y. Estrin, A. Vinogradov, Extreme grain refinement by SPD: A wealth of challenging science, Acta Materialia. 61 (2013) 782–817.
DOI: 10.1016/j.actamat.2012.10.038
Google Scholar
[2]
G.H. Majzoobi, K. Azadikhah, J. Nemati, The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6, Materials Science and Engineering A. 516 (2009) 235–247.
DOI: 10.1016/j.msea.2009.03.020
Google Scholar
[3]
M. Sayahi, S. Sghaier, and H. Belhadjsalah, Finite element analysis of ball burnishing process: comparisons between numerical results and experiments, International Journal of Advanced Manufacturing Technology. 67 (2013) 1665–1673.
DOI: 10.1007/s00170-012-4599-9
Google Scholar
[4]
K. Dai, L. Shaw, Comparison between shot peening and surface nanocrystallization and hardening processes, Materials Science and Engineering A. 463 (2007) 46–53.
DOI: 10.1016/j.msea.2006.07.159
Google Scholar
[5]
Y. Yogo, M. Sawamura, M. Hosoya, M. Kamiyama, N. Iwata, T. Ishikawa, Measurement method for stress–strain curve in a super-large strain range, Materials Science & Engineering A. 600 (2014) 82–89.
DOI: 10.1016/j.msea.2014.02.026
Google Scholar
[6]
R. Gupta, S. Srivastava, N.K. Kumar, S.K. Panthi, High leaded tin bronze processing during multi-directional forging: Effect on microstructure and mechanical properties, Materials Science & Engineering A. 654 (2016) 282–291.
DOI: 10.1016/j.msea.2015.12.068
Google Scholar
[7]
Daniel Mombeini and Amir Atrian, Investigation of Deep Cold Rolling Effects on the Bending Fatigue of Brass C38500, Latin American Journal of Solids and Structures. 15 (2018).
DOI: 10.1590/1679-78254317
Google Scholar
[8]
I.M. Gryadunov, S.Yu. Radchenko, D.O. Dorokhov, P.G. Morrev, Deep Hardening of Inner Cylindrical Surface by Periodic Deep Rolling-Burnishing Process, Modern Applied Science. 9 (2015) 251–258.
DOI: 10.5539/mas.v9n9p251
Google Scholar
[9]
Kaishang Li, Jian Peng, Changyu Zhou, Construction of whole stress-strain curve by small punch test and inverse finite element, Results in Physics. 11 (2018) 440–448.
DOI: 10.1016/j.rinp.2018.09.024
Google Scholar
[10]
M. Beghini, L. Bertini, V. Fontanari, Evaluation of the stress–strain curve of metallic materials by spherical indentation, International Journal of Solids and Structures. 43 (2006) 2441–2459.
DOI: 10.1016/j.ijsolstr.2005.06.068
Google Scholar
[11]
G.H. Majzoobi, S. Teimoorial Motlagh, and A. Amiri, Numerical Simulation of residual stress induced by roll-peening, Transactions of Indian Institute of Metals. 63 (2010) 499-504.
DOI: 10.1007/s12666-010-0071-4
Google Scholar
[12]
P.G. Morrev and V.A. Gordon, Simulation of surface hardening in the deep rolling process by means of an axial symmetric nodal averaged finite element, Journal of Physics: Conf. Series 973 (2018).
DOI: 10.1088/1742-6596/973/1/012013
Google Scholar
[13]
P.G. Morrev and V.A. Gordon, An axisymmetric nodal averaged finite element, Latin American Journal of Solids and Structures 15 (2018).
DOI: 10.1590/1679-78254349
Google Scholar
[14]
A.M. Glezer, Creation principles of new-generation multifunctional structural materials, Advances in Physical Sciences. 55 (2012) 522–529. ).
DOI: 10.3367/ufne.0182.201205h.0559
Google Scholar
[15]
P.G. Morrev, K.I. Kapyrin, L.N. Kurdyumova, I.Yu. Kulikov, N.V. Tatarchenkov, and V.A. Gordon, On construction of SPD stress-strain curve for bronze Cu85-Pb5-Sn5-Zn5, Materials Science and Engineering: A, in press, available online 11 May (2019).
DOI: 10.1016/j.msea.2019.05.020
Google Scholar