Highly Efficient Synthesis of Oxindole Derivatives Via Catalytic Intramolecular C-H Insertion Reactions of Diazoamides

Article Preview

Abstract:

Oxindole derivatives were efficiently synthesized from diazoamides derived from aniline derivatives in the presence of a Ru(II)-Pheox catalyst. Ru(II)-Pheox was found to be one of the most efficient catalysts so far for the synthesis of oxindole derivatives from the diazoamides in high yields (up to 99%) with high regioselectivity. Furthermore, the reaction was rapid and no substituent effects on the aromatic ring.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-256

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Tokunaga, W.E. Hume, J. Nagamine, R. Nagata, Structure-activity relationships of the oxindole growth hormone secretagogues, Bioorg. Med. Chem. Lett. 15 (2005) 1789–1792.

DOI: 10.1016/j.bmcl.2005.02.042

Google Scholar

[2] J. Strigacova, D. Hudecova, M. Mikulasova, L. Varecka, A. Lasikova, D. Vegh, Novel oxindole derivatives and their biological activity, Folia Microbiol. 46 (2001) 187–192.

Google Scholar

[3] S.S. Rindhe, B.K. Karale, R.C. Gupta, M.A. Rode, Synthesis, antimicrobial and antioxidant activity of some oxindoles. Indian J. Pharm Sci. 73 (2011) 292–296.

Google Scholar

[4] A.L. Davis, D.R. Smith, T.J. McCord, Synthesis and microbiological properties of 3-amino-1-hydroxy-2-indolinone and related compounds, J. Med. Chem. 16 (1973) 1043–1045.

DOI: 10.1021/jm00267a020

Google Scholar

[5] M.S. Estevao, L.C. Carvalho, L.M. Ferreira, E. Fernandes, M.M.B. Marques, Analysis of the antioxidant activity of an indole library: cyclic voltammetry versus ROS scavenging activity, Tetrahedron Lett. 52 (2011) 101–106.

DOI: 10.1016/j.tetlet.2010.10.172

Google Scholar

[6] R. Shintani, M. Inoue, T. Hayashi, Rhodium-catalyzed asymmetric addition of aryl- and alkenylboronic acids to isatins, Angew. Chem. Int. Ed. 45 (2006) 3353–3356.

DOI: 10.1002/anie.200600392

Google Scholar

[7] I. D. Hills, G. C. Fu, Catalytic enantioselective synthesis of oxindoles and benzofuranones that bear a quaternary stereocenter, Angew. Chem. Int. Ed. 42 (2003) 3921–3924.

DOI: 10.1002/anie.200351666

Google Scholar

[8] A.B. Dounay, K. Hatanaka, J.J. Kodanko, M. Oestreich, L.E. Overman, L.A. Pfeifer, M.M. Weiss, Catalytic aymmetric synthesis of quaternary carbons bearing two aryl substituents. Enantioselective synthesis of 3-alkyl-3-aryl oxindoles by catalytic asymmetric intramolecular Heck reactions, J. Am. Chem. Soc. 125 (2003) 6261–6271.

DOI: 10.1021/ja034525d

Google Scholar

[9] E.J. Hennessy, S.L. Buchwald, Synthesis of substituted oxindoles from α-chloroacetanilides via Palladium-catalyzed C−H functionalization, J. Am. Chem. Soc. 125 (2003) 12084–12085.

DOI: 10.1021/ja037546g

Google Scholar

[10] M.P. Doyle, M.A. McKervey, T. Ye, Modern catalytic methods for organic synthesis with diazo compound, John Wiley and Sons, New York, (1998).

Google Scholar

[11] H.M.L. Davies, R.E. Beckwith, Catalytic enantioselective C−H activation by means of metal−carbenoid-induced C−H insertion, Chem. Rev. 103 (2003) 28612904.

DOI: 10.1021/cr0200217

Google Scholar

[12] C.V. Galliford, K.A. Scheidt, Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents, Angew. Chem. Int. Ed. 46 (2003) 8748–8758.

DOI: 10.1002/anie.200701342

Google Scholar

[13] P. Garg, S.D. Jadhav, A. Singh, Oxidation state dichotomy in copper‐catalyzed intramolecular cyclization of α‐diazoanilides: An integrated synthetic platform for oxindoles and isatins enabled by oxygenase‐type reactivity, Asian J. Org. Chem. 6 (2017) 1019–1023.

DOI: 10.1002/ajoc.201700192

Google Scholar

[14] S. Chanthamath, H.S.A. Mandour, T.M.T. Tong, K. Shibatomi, S. Iwasa, Highly stereoselective cyclopropanation of diazo Weinreb amides catalyzed by chiral Ru(II)–Amm–Pheox complexes, Chem. Commun. 52 (2016) 7814–7817.

DOI: 10.1039/c6cc02498j

Google Scholar

[15] Y. Nakagawa, S. Chanthamath, I. Fujisawa, K. Shibatomi, S. Iwasa, Ru(II)-Pheox-catalyzed Si–H insertion reaction: construction of enantioenriched carbon and silicon centers, Chem. Commun. 53 (2017) 3753–3756.

DOI: 10.1039/c7cc01070b

Google Scholar

[16] M. Kotozaki, S. Chanthamath, I. Fujisawa, K. Shibatomi, S. Iwasa, Highly stereoselective cyclopropanation of various olefins with diazosulfones catalyzed by Ru(II)–Pheox complexes, Chem. Commun. 53 (2017) 12193–12196.

DOI: 10.1039/c7cc05951e

Google Scholar

[17] M. Kotozaki, S. Chanthamath, T. Fujii, K. Shibatomi, S. Iwasa, Highly enantioselective synthesis of trifluoromethyl cyclopropanes by using Ru(II)-Pheox catalysts, Chem. Commun. 54 (2018) 5110–5113.

DOI: 10.1039/c8cc02286k

Google Scholar

[18] Y. Nakagawa, Y. Imokawa, I. Fujisawa, N. Nakayama, H. Goto, S. Chanthamath, K. Shibatomi, S. Iwasa, Ligand exchange reaction on a Ru(II)–Pheox complex as a mechanistic study of catalytic reactions, ACS Omega. 3 (2018) 11286–11289.

DOI: 10.1021/acsomega.8b01510

Google Scholar

[19] M. Tone, Y. Nakagawa, S. Chanthamath, I. Fujisawa, N. Nakayama, H. Goto, K. Shibatomi, S. Iwasa, Highly stereoselective spirocyclopropanation of various diazooxindoles with olefins catalyzed using Ru(II)-complex, RSC Advances, 8 (2018) 39865–39869.

DOI: 10.1039/c8ra09212e

Google Scholar

[20] Y. Nakagawa, N. Nakayama, H. Goto, I. Fujisawa, S. Chanthamath, K. Shibatomi, S. Iwasa, Computational chemical analysis of Ru(II)-Pheox-catalyzed highly enantioselective intramolecular cyclopropanation reactions, Chirality 31 (2019) 52–61.

DOI: 10.1002/chir.23033

Google Scholar

[21] Y. Nakagawa, S. Chanthamath, Y. Liang, K. Shibatomi, S. Iwasa, Regio- and enantioselective intramolecular amide carbene insertion into primary C-H bonds using Ru(II)-Pheox catalyst, J. Org. Chem. 84 (2019) 2607–2618.

DOI: 10.1021/acs.joc.8b03044

Google Scholar

[22] M.P. Doyle, M.S. Shanklin, H. Pho, S.N. Mahapatro, Rhodium (I1) acetate and Nafion-H catalyzed decomposition of N-aryldiazoamides. An efficient synthesis of 2(3H)-indolinones, J. Org. Chem. 53 (1988) 1017–1022.

DOI: 10.1021/jo00240a015

Google Scholar

[23] C. Prandi, E.G. Occhiato, S. Tabasso, P. Bonfante, M. Novero, D. Scarpi, M.E. Bova, I. Miletto, New potent fluorescent analogues of strigolactones: Synthesis and biological activity in parasitic weed germination and Fungal Branching, Eur. J. Org. Chem. (2011) 3781–3793.

DOI: 10.1002/ejoc.201100616

Google Scholar