Synthesis Strategy of Hierarchical Alumiosilicates from Low Grade Indonesian Kaolin with Adjusted Activity in Acetalization Reaction

Article Preview

Abstract:

Synthesis strategy of hierarchical aluminosilicates was carried out by varying the starting material, type of a basic solution, and the hydrothermal condition. Aluminosilicate was synthesized using pre-treated low-quality kaolin by three kinds of basic solution, such as sodium hydroxide, sodium fluoride, and tetrapropyl ammonium hydroxide. The hydrothermal condition was carried out by gradual temperature and constant temperature. The desired mole ratio of Si/Al achieved by dealumination or by addition of silica. Products were characterized by X-ray diffraction, FTIR spectrometry, and nitrogen physisorption. Cation exchange was carried out on the product to obtain an acid catalyst. The acidity test of the catalyst was carried out by FTIR-pyridine spectrometry. The catalyst activity test was carried out to the acetalization reaction of 3,4-dimethoxybenzaldehyde with propylene glycol. The results showed that the catalyst synthesized with the basic solution of tetrapropyl ammonium hydroxide had the highest acid site number and the highest conversion of 3,4-dimethoxybenzaldehyde to acetal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

526-534

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Zhang, J. Shi, Y. Jin, Y. Fu, Y. Zhong, W. Zhu, Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols, Chem. Eng. J. 259 (2015) 183-190.

DOI: 10.1016/j.cej.2014.07.119

Google Scholar

[2] Q. Li, Z. Wu, B. Tu, S.S. Park, C.S. Ha, D. Zhao, Highly hydrothermal stability of ordered mesoporous aluminosilicates Al-SBA-15 with high Si/Al ratio, Microporous Mesoporous Mater. 135 (2010) 95-104.

DOI: 10.1016/j.micromeso.2010.06.016

Google Scholar

[3] A.C. Lopes, P. Martins, S. Lanceros-Mendez, Aluminosilicate and aluminosilicate based polymer composites: present status, applications and future trends, Prog. Surf. Sci. 89 (2014) 239-277.

DOI: 10.1016/j.progsurf.2014.08.002

Google Scholar

[4] Hartati, D. Prasetyoko, M. Santoso, H. Bahruji, S. Triwahyono, Highly active aluminosilicate with a hierarchical porous structure for acetalization of 3,4-dimethoxybenzaldehyde, Jurnal Teknologi 69 (2014) 25-30.

DOI: 10.11113/jt.v69.3198

Google Scholar

[5] Hartati, D. Prasetyoko, M. Santoso, Cyclic acetalization of furfural on porous aluminosilicate acid catalysts, Indones. J. Chem. 16 (2016) 289-296.

DOI: 10.22146/ijc.21144

Google Scholar

[6] H. Liu, T. Shen, T. Li, P. Yuan, G. Shi, X. Bao, Green synthesis of zeolites from a natural aluminosilicate mineral rectorite: effect of thermal treatment temperature, Appl. Clay Sci. 90 (2014) 53-60.

DOI: 10.1016/j.clay.2014.01.006

Google Scholar

[7] C. Sun, F. Zhang, A. Wang, S. Li, F. Cheng, Direct synthesis of aluminosilicate using natural clay from low-grade potash ores of a salt lake in Qinghai China, and its use in octadecylamine adsorption, Appl. Clay Sci. 108 (2015) 123-127.

DOI: 10.1016/j.clay.2015.02.007

Google Scholar

[8] L. Ayele, J. Pérez-Pariente, Y. Chebude, I. Díaz, Conventional versus alkali fusion synthesis of zeolite a from low grade caolin, Appl. Clay Sci. 132-133 (2016) 485-490.

DOI: 10.1016/j.clay.2016.07.019

Google Scholar

[9] C. Du, H. Yang, Investigation of physicochemical aspects from natural kaolin to Al-MCM-41 mesoporous materials, J. Colloid Interface Sci. 369 (2012) 216-222.

DOI: 10.1016/j.jcis.2011.12.041

Google Scholar

[10] I. Qoniah, D. Prasetyoko, H. Bahruji, S. Triwahyono, A.A. Jalil, Suprapto, Hartati, T.E. Purbaningtias, Direct synthesis of mesoporous aluminosilicate fom Indonesian kaolin without calcinations, Appl. Clay Sci. 118 (2015) 290-294.

DOI: 10.1016/j.clay.2015.10.007

Google Scholar

[11] H. Hartati, A.A. Widati, T.K. Dewi, D. Prasetyoko, Direct synthesis of highly crystalline ZSM-5 from Indonesian kaolin, Bull. Chem. React. Eng. Catal. 12 (2017) 251-255.

DOI: 10.9767/bcrec.12.2.809.251-255

Google Scholar

[12] T. Abdullahi, Z. Harun, M.H.D. Othman, A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process, Adv. Powder Technol. 28 (2017) 1827-1840.

DOI: 10.1016/j.apt.2017.04.028

Google Scholar

[13] B.B.K. Diffo, A. Elimbi, M. Cyr, J.D. Manga, H.T. Kouamo, Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers, J. Asian Ceram. Soc. 3 (2015) 130-138.

DOI: 10.1016/j.jascer.2014.12.003

Google Scholar

[14] J. Davidovits, Geopolymer Chemistry and Applications, 4th edition, Institud Géopolymerè, France, (2008).

Google Scholar

[15] N. Widiastuti, Farhanah, D. Prasetyoko, H. Fansuri, Particle size and crystal conformation of synthesized zeolite-A with tetrapropylammonium hydroxide (TPAOH) addition, Reaktor 15 (2014) 132-138.

DOI: 10.14710/reaktor.15.2.132-138

Google Scholar

[16] Kovo, Abdulsalami, Development Zeolite and Zeolite Membrane From Ahako Nigerian Kaolin, Thesis: Faculty of Engineering and Physical Science, The University of Manchester, (2010).

Google Scholar

[17] F. Pan, X. Lu, T.Wang, Y. Wang, Z. Zhang, Y. Yan, S. Yang, Synthesis of large mesoporous γ-Al2O3 from coal-series kaolin at room temperature, Mater. Lett. 91 (2013) 136-138.

DOI: 10.1016/j.matlet.2012.09.052

Google Scholar

[18] I.D. Wilson, E.R. Adlarc, M. Cooke, C.F. Poole, Encyclopedia of Separation Science, Academic Press, (2000).

Google Scholar

[19] R.R. Pawar, S.V. Jadhav, C.H. Bajaj, Microwave-assisted rapid valorization of glycerol towards acetals and ketals, Chem. Eng. J. 235 (2014) 61-66.

DOI: 10.1016/j.cej.2013.09.018

Google Scholar

[20] J.Q. Wang, Y.X. Huang, Y. Pan, J.X. Mi, New Hydrothermal route for the synthesis of high purity nanoparticles of zeolite Y from kaolin and quartz, Microporous Mesoporous Mater. 232 (2016) 77-85.

DOI: 10.1016/j.micromeso.2016.06.010

Google Scholar

[21] E. Moihudin, Y.M. Isa, M.M. Mdleleni, N. Sincadu, D. Key, T. Tshabalala, Synthesis of ZSM-5 from impure and beneficiated Grahamstwon kaolin: effect of kaolinite content, crystallization temperatures and time, Appl. Clay Sci. 119 (2016) 213-221.

DOI: 10.1016/j.clay.2015.10.008

Google Scholar

[22] C.S. Cundy, P.A. Cox, The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism, Microporous Mesoporous Mater. 82 (2005) 1-78.

DOI: 10.1016/j.micromeso.2005.02.016

Google Scholar

[23] A. Corma, Towards a rationalization of zeolite and zeolitic materials synthesis, Stud. Surf. Sci. Catal. 154 (2004) 25-40.

Google Scholar

[24] X.S. Zhao, G.Q.M. Lu, G.J. Millar, Advances in mesoporous molecular sieve MCM-41, Ind. Eng. Chem. Res. 35 (1996) 2075-2090.

DOI: 10.1021/ie950702a

Google Scholar

[25] F. Pan, X. Lu, Y. Wang, S. Chen, T. Wang, Y. Yan, Synthesis and crystallization kinetics of ZSM-5 without organic template from coal-series kaolinite, Microporous Mesoporous Mater. 184 (2014) 134-140.

DOI: 10.1016/j.micromeso.2013.10.013

Google Scholar

[26] K. Byrappa, B.V.S. Kumar, Characterization of zeolites by infrared spectroscopy. Asian J. Chem. 19 (2007) 4933-4935.

Google Scholar

[27] K. Brylewska, P. Roźek, M. Król, W. Mozgawa, The influence of dealumination/desilication on structural properties of metakaolin-based geopolymer, Ceram. Int. 44 (2018) 12853-12861.

DOI: 10.1016/j.ceramint.2018.04.095

Google Scholar

[28] W. Wan, T. Fu, R. Qi, J. Shao, Z. Li, Co-effect of Na+ and TPA+ in alkali treatment on fabrication of mesoporous ZSM-5 catalyst for methanol to hydrocarbons reactions, Ind. Eng. Chem. Res. 55 (2016) 13040-13049.

DOI: 10.1021/acs.iecr.6b03938

Google Scholar

[29] H. Yingping, L. Min, D. Chengyi, X. Shutao, W. Yingxu, L. Zhongmin, G. Xinwen, Modification of crystalline H-ZSM-5 zeolite with tetrapropylammonium hydroxide and its catalytic performance in ethanol to gasoline reaction, Chinese J. Catal. 34 (2013) 1148-1158.

DOI: 10.1016/s1872-2067(12)60579-8

Google Scholar