Numerical Study of the Fermi Surface Evolution in Cuprates Using the One-Band Hubbard Model

Article Preview

Abstract:

A Numerical calculation of the Fermi Surface (FS) evolution in cuprate using the one-band Hubbard model by the matrix diagonalization method has been done. This work focusses on the study of the evolution of the FS in the cuprate material, namely , numerically by introducing a specific order parameter in the Hubbard model matrix. In this study, we confirm two evolution types of the FS of as an experimental result. Firstly, the evolution of the antibonding FS topology from the electron-like to the hole-like is generated by the order parameter that has a form of where is the order parameter coefficient that corresponds to the hopping parameter of the atomic neighbor long-range interaction and is the normalized momenta coordinate of the first Brillouin zone. On the contrary, the order parameter that has a form of generates the evolution of the FS from the hole-like topology to the electron-like topology. Secondly, the anisotropic evolution of the FS can be described by an extended d-wave order parameter which generating either the V-shape or U-shape type of the energy gap.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

507-513

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Ding, J.C. Campuzano, M.R. Norman, M. Randeria, T. Yokoya, T. Takahashi, T. Takeuchi, T. Mochiku, K. Kadowaki, P. Guptasarma, D.G. Hinks, ARPES study of the superconducting gap and pseudogap in Bi2Sr2CaCu2O8+δ, J. Phys. Chem. Solid 59 (1998) 1888-1891.

DOI: 10.1016/s0022-3697(98)00136-x

Google Scholar

[2] J. Mesot, M.R. Norman, H. Ding, M. Randeria, J.C. Campuzano, A. Paramekanti, H.M. Fretwell, A. Kaminski, T. Takeuchi, T. Yokoya, T. Sato, T. Takahashi, T. Mochiku, K. Kadowaki, Superconducting gap anisotropy and quasiparticle interactions: a doping dependent photoemission study, Phys. Rev. Lett. 83 (1999) 840-843.

DOI: 10.1103/physrevlett.83.840

Google Scholar

[3] S.V. Borisenko, , A.A. Kordyuk, , T.K. Kim, , S. Legner, , K.A. Nenkov, , M. Knupfer., M.S. Golden, , I. Fink, , H. Berger, R. Follath, Superconducting gap in the presence of bilayer splitting in underdoped (Pb, Bi)2Sr2CaCuO8+δ, Phys. Rev. B 66 (2002) 1-4.

DOI: 10.1103/physrevlett.90.207001

Google Scholar

[4] M.R. Norman, H. Ding, M. Randeria, J.C. Campuzano, T. Yokoya, T. Takeuchi, T. Mochiku, K. Kadowaki, P. Guptasarma, D.G. Hinks, Destruction of fermi surface in underdoped high-Tc superconductors, Nature 391 (1998) 157-160.

DOI: 10.1038/32366

Google Scholar

[5] W.S. Lee, I.M. Vishik, K. Tanaka, D.H. Lu, T. Sasagawa, N. Nagaosa, T.P. Devereaux, Z. Hussain, Z.X. Shen, Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212, Nature 450 (2007) 81-84.

DOI: 10.1038/nature06219

Google Scholar

[6] J.K. Ren, X. B. Zhu, H.F. Yu, Y. Tian, H.F. Yang, C.Z. Gu, N.L. Wang, Y.F. Ren, S.P. Zhao, Energy gaps in Bi2Sr2CaCu2O8+δ cuprate superconductors, Sci. Rep. 248 (2012) 1-7.

DOI: 10.1038/srep00248

Google Scholar

[7] H. Ding., T. Yokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M.R. Norman, T. Mochiku, K. Kadowaki, J. Giapintzakis, Spectroscopic evidence for a pseudogap in the normal state of underdoped high- Tc superconductor, Nature 382 (1996) 51-54.

DOI: 10.1038/382051a0

Google Scholar

[8] A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mizokawa, A. Fujimori, Z.X. Shen, T. Kakeshita, H. Eisaki, S. Uchida, Doping-Dependent evolution of the electronic structure of La2-xSrxCuO4 in the superconducting and metallic phase, Phys. Rev. B 65 (2002) 1-11.

DOI: 10.1016/s0921-4534(00)01040-6

Google Scholar

[9] A. Kaminski, S. Rosenkranz, H. M. Fretwell, M.R. Normal, M. Randeria, J.C. Campuzano, J.M. Park, Z.Z. Li, H. Raffy, Change of fermi-surface topology in Bi2Sr2CaCu2O8+δ with Doping, Phys. Rev. B 73 (2006) 1-4.

Google Scholar

[10] D.S. Marshall, D.S. Dessau, A.G. Loeser, C.H. Park, A.Y. Matsuura, J.N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W.E. Spicer, Z.X. Shen, Unconventional electronic structure evolution with hole doping in Bi2Sr2CaCu2O8+δ: angel-resolved photoemission result, Phys. Rev. Lett. 76 (1996) 4841-4844.

DOI: 10.1016/b978-0-444-82245-1.50045-5

Google Scholar

[11] Damascelli, Andrea., Hussain, Zahid., Shen, Zhi-Xun, Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys. 75 (2003) 473-541.

DOI: 10.1103/revmodphys.75.473

Google Scholar

[12] A.A. Kordyuk, S.V. Borisenko, M.S. Golden, S. Legner, K.A. Nenkov, M. Knupfer, J. Fink, H. Berger, L. Forro, R. Follath, Doping dependence of the fermi surface in (Bi, Pb)2Sr2CaCu2O8+δ. Phys. Rev. B. 66 (2002) 014502.

Google Scholar

[13] F.H.L. Essler, H. Frahm, F. Gohmann, A. Klumper, V.E. Korepin, The one-dimensional hubbard model, Cambridge University Press, New York, (2005).

Google Scholar

[14] C. Poole, R. Prozorov, H. Farach, A.R. Creswick, Superconductivity, Elsevier Inc., Amsterdam, (2014).

Google Scholar

[15] Raza, Hassan (Ed)., Graphene nanoelectronics, Springer-Verlag, Berlin, (2012).

Google Scholar

[16] O.K. Andersen, A.I. Liechtenstein, O. Jepsen, F. Paulsen, LDA energy bands, low-energy Hamiltonian, t',t",t⊥k, and J⊥, J. Phys. Chem. Solid, 56 (1995) 1573-1591.

DOI: 10.1016/0022-3697(95)00269-3

Google Scholar

[17] S. Chakravarty, A. Sudbo, P.W. Anderson, S. Strong, Interlayer tunneling and gap anisotropy in high-temperature superconductors, Science, 261 (1993) 337-340.

DOI: 10.1126/science.261.5119.337

Google Scholar

[18] M.S. Golden, C. Durr, A. Koitzsch, S. Legner, Z. Hu, S. Borisenko, M. Knupfer, J. Fink, The electronic structure of cuprates from high energy spectroscopy, J. Electron. Spectrosc., 117-118 (2001) 203-222.

DOI: 10.1016/s0368-2048(01)00266-3

Google Scholar