Purification Method of Silver Nanoparticles (AgNPs) and its Identification Using UV-Vis Spectrophotometer

Article Preview

Abstract:

The development of nanotechnology applications is rapidly growing in many sectors. One of them is silver nanoparticles (AgNPs) which are metal nanoparticles that play an important role, especially in nanomedicine. The most effective method of purifying to obtain stable AgNPs is very important to study. Experiments on the separation of AgNPs have been carried out using the size exclusion chromatography and centrifugation methods to see the effectiveness of refining the two methods. This experiment begins with the synthesis of AgNPs using the chemical reduction method. Then, the synthesized AgNPs were purified by Size Exclusion Chromatography (SEC) and centrifugation method then analyzed using UV-Vis spectrophotometer to determine the maximum peaks before and after purification. The experimental results were obtained that centrifugation methods and SEC having the same effectiveness in refining AgNPs. The centrifugation method at various speed (0, 3000, 6000, 9000, 12000 and 15000 rpm) gave wavelength results 403, 404, 404, 405, 404, and 404 nm. The SEC method using Sephadex-25 column showed the 4th to 8th fractions gave the maximum wavelength 404, 404, 404, 405, and 404 nm, respectively. The maximum wavelength of both methods showed the surface plasmon resonance characteristic of AgNPs. However, centrifugation at 3000 rpm has better homogeneity than SEC method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

484-491

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Dhand, N. Dwivedi, X.J. Loh, A.N.J. Ying, N.K. Verma, R.W. Beuerman, R. Lakshminarayanan, S. Ramakrishna, Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview, RSC Adv. 5 (2015) 105003-105037.

DOI: 10.1039/c5ra19388e

Google Scholar

[2] A.L. González, C. Noguez, J. Beránek, A.S. Barnard, Size, shape, stability, and color of plasmonic silver nanoparticles, J. Phys. Chem. C 118 (2014) 9128-9136.

DOI: 10.1021/jp5018168

Google Scholar

[3] U.N. Sholikhah, A. Pujiyanto, E. Lestari, E. Sarmini, T. Widyaningrum, K. Kadarisman, T. Triyanto, P. Puspitasari, Stability of silver nanoparticles as imaging materials, J. Pure Appl. Chem. Res. 5 (2016) 173-177.

Google Scholar

[4] C.S. Tsai, J.K. Hsiao, Study on the radiosensitizing applications of gold nanoparticles, Appl. Mech. Mater. 851 (2016) 26-30.

Google Scholar

[5] A. Khan, A. Rashid, R. Younas, R. Chong, A chemical reduction approach to the synthesis of copper nanoparticles, Int. Nano Lett. 6 (2015) 21-26.

DOI: 10.1007/s40089-015-0163-6

Google Scholar

[6] G. Suriati, M. Mariatti, A. Azizan, Synthesis of silver nanoparticles by chemical reduction method: Effect of reducing agent and surfactant concentration, Int. J. Automotive Mech. Eng. 10 (2014) 1920-1927.

DOI: 10.15282/ijame.10.2014.9.0160

Google Scholar

[7] V. Kravets, Z. Almemar, K. Jiang, K. Culhane, R. Machado, G. Hagen, A. Kotko, I. Dmytruk, K. Spendier, A. Pinchuk, Imaging of biological cells using luminescent silver nanoparticles, Nanoscale Res. Lett. 11 (2016) 1-9.

DOI: 10.1186/s11671-016-1243-x

Google Scholar

[8] P.K. Ngumbi, S.W. Mugo, J.M. Ngaruiya, Determination of gold nanoparticles sizes via surface plasmon resonance, IOSR Journal of Appled Chemistry 11 (2018) 25-29.

Google Scholar

[9] S.B. Aziz, O.G. Abdullah, D.R. Saber, M.A. Rasheed, H.M. Ahmed, Investigation of metallic silver nanoparticles through UV-Vis and optical micrograph techniques, Int. J. Electrochem. Sci. 12 (2017) 363-373.

DOI: 10.20964/2017.01.22

Google Scholar

[10] A.V. Ramesh, D.R Devi, G. Battu, K. Basavaiah, A Facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of ficus hispida Linn f. for catalytic, antioxidant and antibacterial applications, S. Afr. J. Chem. Eng. 26 (2017) 25-34.

DOI: 10.1016/j.sajce.2018.07.001

Google Scholar

[11] Y.H. Deng, C.C. Wang, J.H. Hu, W.L. Yang, S.K. Fu, Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach, Colloids Surf. A Physicochem. Eng. Asp. 262 (2005) 87-93.

DOI: 10.1016/j.colsurfa.2005.04.009

Google Scholar

[12] S.T. Jahan, S.M.A. Sadat, M. Walliser, A. Haddadi, Targeted therapeutic nanoparticles: An immense promise to fight against cancer, J. Drug Deliv. 2017 (2017) 1-24.

DOI: 10.1155/2017/9090325

Google Scholar

[13] A. Maghoul, A. Rostami, S. Matloub, A. Pourrezaei, Design considerations influencing optical response in gold spherical nanoparticles, J. Nano Res. 46 (2017) 1-11.

DOI: 10.4028/www.scientific.net/jnanor.46.1

Google Scholar

[14] J.D. Robertson, L. Rizzello, M.A. Olias, C. Contini, M.S. Magon, S.A. Renshaw, G. Battaglia, Purification of nanoparticles by size and shape, Sci. Rep. 6 (2016) 1-9.

DOI: 10.1038/srep27494

Google Scholar

[15] M.U. Rashid, K.H. Bhuiyan, M.E. Quayum, Synthesis of silver nano particles (Ag-NPs) and their uses for quantitative analysis of vitamin C tablets, Dhaka Univ. J. Pharm. Sci. 12 (2013) 29-33.

DOI: 10.3329/dujps.v12i1.16297

Google Scholar

[16] H.K. Ardani, C. Imawan, W. Handayani, D. Djuhana, A. Harmoko, V. Fauzia, Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of diospyros discolor willd leaves using polyvinyl alcohol, IOP Conf. Ser. Mater. Sci. Eng. 188 (2017) 1-5.

DOI: 10.1088/1757-899x/188/1/012056

Google Scholar

[17] S. V Banne, M.S. Patil, R.M. Kulkarni, S.J. Patil, Synthesis and characterization of silver nano particles for EDM applications, Mater. Today Proc. 4 (2017) 12054-12060.

DOI: 10.1016/j.matpr.2017.09.130

Google Scholar

[18] J. Puišo, D. Adliene, A. Guobiene, I. Prosycevas, R. Plaipaite-Nalivaiko, Modification of Ag-PVP nanocomposites by gamma irradiation, Mater. Sci. Eng. B. Solid State Mater. Adv. Technol. 176 (2011) 1562-1567.

DOI: 10.1016/j.mseb.2011.05.003

Google Scholar

[19] N.S.F. López, M.C. Valadez, G.M.M. Ibarra, E.L. Rodriguez, E.I.T. Flores, Y.D. Beleno, C.E.M. Nunez, L.P.R. Rodriguez, H.A. Chavez, J.C. Rosas, R.R. Bon, M.F. Acosta, Silver nanoparticles and silver ions stabilized in NaCl nanocrystals, Physica E 84 (2016) 482-488.

DOI: 10.1016/j.physe.2016.07.012

Google Scholar

[20] M. Shukla, I. Sinha, Catalytic Activation of PVP-Stabilized Gold/Silver Cluster on p-Nitrophenol Reduction: A DFT, Density Functional Calculations-Recent Progresses of Theory and Application, INTECH, London, (2018).

DOI: 10.5772/intechopen.72097

Google Scholar

[21] L. P. Datta, A. Chatterjee, K. Acharya, P. De, M. Das, Enzyme responsive nucleotide functionalized silver nanoparticles with effective antimicrobial and anticancer activity, New J. Chem. 41 (2017) 1538-1548.

DOI: 10.1039/c6nj02955h

Google Scholar

[22] B.D. Baskoro, R.A. Nugraha, R. Puspitawati, S. Redjeki, Effect of centrifugation at 7,000 g, 8,000 g, and 9,000 g on the salivary protein profile ≥ 30 kDa, J. Phys. Conf. Ser. 884 (2017) 1-5.

DOI: 10.1088/1742-6596/884/1/012013

Google Scholar

[23] X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches, Int. J. Mol. Sci. 17 (2016) 1-34.

Google Scholar

[24] T.A. EL-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, H. Talat, Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique, Eur. Phys. J. Spec. Top. 153 (2008) 361-364.

DOI: 10.1140/epjst/e2008-00462-0

Google Scholar