Physicochemical Determination of Calcium Carbonate (CaCO3) from Chicken Eggshell

Article Preview

Abstract:

To overcome the increased processing of eggshell waste in East Java, Indonesia, the important solution is to synthesize chicken eggshells into calcium carbonate. The process of synthesizing eggshells into calcium carbonate is carried out by a mechanochemical process using a ball milling machine for 10 h and the sintering time for 120 min at a temperature of 900, 1000, 1100, and 1200 °C. The results of the eggshell synthesis were characterized using X-ray Diffraction, SEM, Raman spectroscopy and FTIR. Those characterizations aimed to obtain the result of phase identification, morphology, physicochemical, and functional group of calcium carbonate. From the phase identification, calcium carbonate obtained from eggshell sintered 1000 °C shows the single-phase triangular structure with agglomeration and spherical morphology. The physicochemical results show that phonon interaction of calcium carbonate obtained from eggshell sintered at 1200 °C has the highest intensity at Raman shift 1083 cm‒1 which indicates the C‒O symmetric stretching band. The functional group of calcium carbonate shows from FTIR results at 3642, 2987, 2508 cm‒1 for O‒H bond, and 1790, 1507 cm‒1 for C‒H bond, and 874, 712 cm‒1 for calcite bonds respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

478-483

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Dong, D. Li, Y. Wu, C.-Z. Li, H. Wang, Synthesis of cathode materials for solid oxide fuel cells with eggshell membrane as template, Chemeca 2010: Engineering at the Edge, 26-29 September 2010, Hilton Adelaide, Australia.

Google Scholar

[2] B. Hosseini, S.M. Mirhadi, M. Mehrazin, M. Yazdanian, M.R.K. Motamedi, Synthesis of nanocrystalline hydroxyapatite using eggshell and trimethyl phosphate, Trauma Mon. 22 (2017) 1-7.

DOI: 10.5812/traumamon.36139

Google Scholar

[3] A. Hussain, Dielectric properties and microwave assisted separation of eggshell and membrane, Thesis, McGill University, (2009).

Google Scholar

[4] S.M. Naga, H.F. Al-Maghraby, M. Sayed, E.A. Saad, Highly porous scaffolds made of nanosized hydroxyapatite powder synthesized from eggshells, J. Ceram. Sci. Tech. 6 (2015) 237-244.

Google Scholar

[5] Jamila, Pemanfaatan Limbah Cangkang Telur, (2014).

Google Scholar

[6] S.C. Wu, H.C. Hsu, S.K. Hsu, Y.C. Chang, W.F. Ho, Effects of heat treatment on the synthesis of hydroxyapatite from eggshell powders, Ceram. Int. 41 (2015) 10718-10724.

DOI: 10.1016/j.ceramint.2015.05.006

Google Scholar

[7] G. S. Bumbrah, R. M. Sharma, Raman spectroscopy-basic principle, instrumentation and selected applications for the characterization of drugs of abuse, Egyptian J. Forensic Sci. 6 (2016) 209-215.

DOI: 10.1016/j.ejfs.2015.06.001

Google Scholar

[8] N. Mironova-Ulmane, A. Kuzmin, M. Grube, Raman and infrared spectromicroscopy of manganese oxides, J. Alloys Compd. 480 (2009) 97-99.

DOI: 10.1016/j.jallcom.2008.10.056

Google Scholar

[9] I. Sopyan, M. Arianti, A.A. Alhamidi, Development of hydroxyapatite powder for medical application: preliminary characterization using FTIR and XRD, Prosiding Pertemuan Ilmiah Ilmu Pengetahuan dan Teknologi Bahan 2002, 22-23 Oktober 2002, Serpong, pp.199-204.

Google Scholar

[10] C.G. Kontoyannis, N.V. Vagenas, Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy, Analyst 125 (2000) 251-255.

DOI: 10.1039/a908609i

Google Scholar

[11] J. A. Razak, S. Sufian, K.Z.K Shaari, P. Puspitasari, T.M. Hoe, N. Yahya, Synthesis, characterization and application of Y3Fe5O12 nanocatalyst for green production of NH3 using magnetic induction method (MIM), AIP Conf. Proc. 1482 (2012) 633-638.

DOI: 10.1063/1.4757548

Google Scholar

[12] P. Risdanareni, P. Puspitasari, E. J. Jaya, Chemical and physical characterization of fly ash as geopolymer material, MATEC Web of Conferences 97 (2017) 1-8.

DOI: 10.1051/matecconf/20179701031

Google Scholar

[13] P. Puspitasari, J. Abd. Razak, N. Yahya, Ammonia synthesis using magnetic induction method (MIM), AIP Conf. Proc. 1482 (2012) 605-610.

DOI: 10.1063/1.4757543

Google Scholar

[14] R. Ševčík, P. Mácová, Localized quantification of anhydrous calcium carbonate polymorphs using micro-Raman spectroscopy, Vib. Spectrosc. 95 (2018) 1-6.

DOI: 10.1016/j.vibspec.2017.12.005

Google Scholar

[15] W. Kaabar, S. Bott, R. Devonshire, Raman spectroscopic study of mixed carbonate materials, Spectrochim. Acta A Mol. Biomol. Spectrosc. 78 (2011) 136-141.

DOI: 10.1016/j.saa.2010.09.011

Google Scholar

[16] L. J. Bonales, V. Muñoz-Iglesias, D. Santamaría-Pérez, M. Caceres, D. Fernandez-Remolar, O. Prieto-Ballesteros, Quantitative Raman spectroscopy as a tool to study the kinetics and formation mechanism of carbonates, Spectrochim. Acta A Mol. Biomol. Spectrosc. 116 (2013) 26-30.

DOI: 10.1016/j.saa.2013.06.121

Google Scholar

[17] F.B. Reig, J.V.G. Adelantado, M.C.M.M. Moreno, FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. application to geological samples, Talanta 58 (2002) 811-821.

DOI: 10.1016/s0039-9140(02)00372-7

Google Scholar

[18] M.B. Toffolo, L. Regev, S. Dubernet, Y. Lefrais, E. Boaretto, FTIR-based crystallinity assessment of aragonite–calcite mixtures in archaeological lime binders altered by diagenesis, Minerals 9 (2019) 1-14.

DOI: 10.3390/min9020121

Google Scholar