[1]
Y. Chen, X. Tian, W. Zeng, X. Zhu, H. Hu, H. Duan, Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis, J. Colloid Interf. Sci. 439 (2014) 21-27.
DOI: 10.1016/j.jcis.2014.10.017
Google Scholar
[2]
Y. Che, A. Zinchenko, S. Murata, Control of a catalytic activity of gold nanoparticles embedded in DNA hydrogel by swelling/shrinking the hydrogel's matrix, J. Colloid Interf. Sci.. 445 (2015) 364-370.
DOI: 10.1016/j.jcis.2015.01.010
Google Scholar
[3]
Z. Zhang, F. Rong, S. Niu, Y. Xie, Y. Wang, H. Yang, Investigation the effects of nano golds on the fluorescence properties of the sectorial poly(amidoamine) (PAMAM) dendrimers. Appl. Surf. Sci. 256 (2010) 7194-7199.
DOI: 10.1016/j.apsusc.2010.05.049
Google Scholar
[4]
T.P.S. Dasari, Y. Zhang, H. Yu, Antimicrobial activity and cytotoxicity of gold (I) and (III) ions gold nanoparticles, Biochem. Pharmacol. 4 (2015) 37-41.
Google Scholar
[5]
X. Zhang, S. Yan, R. Tyagi, R.Y. Surampalli, Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates, Chemosphere 82 (2011) 489-494.
DOI: 10.1016/j.chemosphere.2010.10.023
Google Scholar
[6]
N. Durán, P.D. Marcato, Biotechnological routes to metallic nanoparticles production: mechanistic aspects, antimicrobial activity, toxicity and industrial applications nano-antimicrobials, in: N.Cioffi, M. Rai (Eds.), Nano-antimirobials, Springer, Heidelberg, Berlin, (2012).
DOI: 10.1007/978-3-642-24428-5_12
Google Scholar
[7]
R.P. Allaker, M.A. Vargas-Reus, G.G. Ren, Nanometals as antimicrobials, John Wiley & Sons, New Jersey, (2012).
Google Scholar
[8]
Y. Zhou, Y. Kong, S. Kundu, J.D. Cirillo, H. Liang, Antibacterial activities of gold and silver nanoparticles against Escherichia coli and Bacillus calmette-guerin, J. Nanobiotechnology. 10 (2012) 1-9.
DOI: 10.1186/1477-3155-10-19
Google Scholar
[9]
G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, P.V. Baptista, Noble metal nanoparticles for biosensing applications, Sensors. 12 (2012) 1657-1687.
DOI: 10.3390/s120201657
Google Scholar
[10]
M. Nadeem, B.H. Abbasi, M. Younas, W. Ahmad, T. Khan, A review of the green syntheses and antimicrobial application of gold nanoparticles, Green Chem. Lett. Rev. 10 (2017) 216-227.
DOI: 10.1080/17518253.2017.1349192
Google Scholar
[11]
W. Patungwasa, J. H. Hodak, pH tunable morphology of the gold nanoparticles produced by citrate reduction, Mater. Chem. Phys. 108 (2008) 45-54.
DOI: 10.1016/j.matchemphys.2007.09.001
Google Scholar
[12]
X. Ji, X. Song, J. Li, Y. Bao, W. Yang, X. Peng, Size control of gold nanocrystals in citrate reduction: the third role of citrate, J. Am. Chem. Soc. 129 (2007) 13939-13948.
DOI: 10.1021/ja074447k
Google Scholar
[13]
T. Maruyama, Y. Fujimoto, T. Maekawa, Synthesis of gold nanoparticle using various amino acids, J. Colloid Interf. Sci. 447 (2014) 254-257.
DOI: 10.1016/j.jcis.2014.12.046
Google Scholar
[14]
Y. N. Isnaini, Synthesis of gold nanoparticles using glutamic acid and antibacterial activity, Thesis, Universitas Gadjah Mada.
Google Scholar
[15]
N. Sharma, G. Bhatt, P. Khotiyal, Gold nanoparticles synthesis, properties, and forthcoming applications – A review, Indian J. Pharm. Biol. Res. 3 (2015) 13-27.
Google Scholar