Quantum Simulations of Preferable H2O Dissociation Pathway on the Ru-Alloyed Pt(111) Surface Based on Density Functional Theory

Article Preview

Abstract:

Reaction pathways for a water molecule dissociation (H2Oads) to form hydroxyl (OHads) and hydrogen (Hads) on the Ru-alloyed Pt(111) surface were computationally modelled on the basis of density functional theory (DFT). The aim of this study was to evaluate whether or not such a reaction can take place and to determine the most probable route for this reaction. To get the answer, we calculated the potential energy surfaces (PES) of the proposed reaction pathways. From the results of the PES scan, we then obtained the most preferential pathway for H2O dissociation, i.e., the reaction route with an activation energy of 0.72 eV. This activation energy value is lower than the value of pure Pt (111), the surface at which H2O dissociation can occur in the real system. Thus, it can be said that water splitting may be easier when catalyzing Ru-alloyed surfaces compared to pure Pt catalysts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

495-500

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sajgure, B. Kachare, P. Gawhale, S. Waghmare, G. Jagadale, Direct methanol fuel cell: a review, Int. J. Curr. 6 (2016) 8–11.

Google Scholar

[2] D. Bayuaji, W.T. Cahyanto, R.F. Abdullatif: submitted to Risalah Fisika (2019).

Google Scholar

[3] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133–A1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[4] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558–561.

DOI: 10.1103/physrevb.47.558

Google Scholar

[5] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994) 14251–14269.

DOI: 10.1103/physrevb.49.14251

Google Scholar

[6] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169–11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[7] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1) (1996) 15–50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[8] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992) 6671–6687.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[9] S. Tsuzuki, H.P. Lüthi, Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model, J. Chem. Phys. 114 (2001) 3949–3957.

DOI: 10.1063/1.1344891

Google Scholar

[10] G. Kresse, J. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758–1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[11] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953–17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[12] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188–5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[13] K.R. Lee, M.K. Jeon, S.I. Woo, Composition optimization of PtRuM/C (M= Fe and Mo) catalysts for methanol electro-oxidation via combinatorial method, Appl. Catal. B. Environ. 91 (2009) 428–433.

DOI: 10.1016/j.apcatb.2009.06.011

Google Scholar

[14] Z.B. Wang, P.J. Zuo, G.P. Yin, Investigations of compositions and performance of PtRuMo/C ternary catalysts for methanol electrooxidation, Fuel Cells 9 (2009) 106–113.

DOI: 10.1002/fuce.200800096

Google Scholar

[15] K.Y. Yeh, Atomistic Modeling of The Cathode/Electrolyte Interface in Proton Exchange Membrane Fuel Cells, Dissertation, The Pennsylvania State University, Pennsylvania, (2012).

Google Scholar

[16] A.A. Phatak, W.N. Delgas, F.H. Ribeiro, W.F. Schneider, Density functional theory comparison of water dissociation steps on Cu, Au, Ni, Pd, and Pt, J. Phys. Chem. C 113 (2009) 7269–7276.

DOI: 10.1021/jp810216b

Google Scholar

[17] R. Bader, Atoms in molecules: A quantum theory, Oxford University Press, New York, (1990).

Google Scholar

[18] W.T. Cahyanto, A. Haryadi, S. Sunardi, A. Basit, Y. Elina, Water molecular adsorption on the low-index Pt surface: A density functional study, Indones. J. Chem. 18 (2018) 195–202.

DOI: 10.22146/ijc.24162

Google Scholar