Synthesis of Fe3O4 Magnetic Nanoparticles in a Helical Microreactor

Article Preview

Abstract:

Fe3O4 nanoparticles (NPs) have previously been employed in various fields owing to their unique physical and chemical properties. In this paper, Fe3O4 NPs are prepared by co-precipitation method in a helical microreactor under different reaction conditions which affect the size of Fe3O4 NPs. The product is characterized by FT-IR and XPS. Also, VSM characterization shows that Fe3O4 exhibits typical superparamagnetic behavior and the saturation magnetization of NPs is 53 emu/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-181

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. Rajabathar, J.J. Vijaya, A. Prabakaran, et al., Synthesis, characterization and catalytic sorption activity of various method prepared magnetite (Fe3O4) nanoparticle deposition on porous BiMnOx nanotubes, J. Alloy. Compd., 698 (2017) 1077-1085.

DOI: 10.1016/j.jallcom.2016.12.192

Google Scholar

[2] V. Kuncser, G. Schinteie, B. Sahoo, et al., Magnetic interactions in water based ferrofluids studied by Mossbauer spectroscopy, J Phys-Condens Mat. 19 (2007).

DOI: 10.1088/0953-8984/19/1/016205

Google Scholar

[3] H. Le Thi Thu, N. Nguyen Hoai, D. Do Hai, et al., Folate attached, curcumin loaded Fe3O4 nanoparticles: A novel multifunctional drug delivery system for cancer treatment, Mater Chem Phys. 172 (2016) 98-104.

DOI: 10.1016/j.matchemphys.2015.12.065

Google Scholar

[4] A. Yari, S. Derki, New MWCNT-Fe3O4@PDA-Ag nanocomposite as a novel sensing element of an electrochemical sensor for determination of guanine and adenine contents of DNA, Sensor Actuat B-Chem. 227 (2016) 456-466.

DOI: 10.1016/j.snb.2015.12.088

Google Scholar

[5] K. Kalantari, M.B. Ahmad, H.R.F. Masoumi, et al., Rapid Adsorption of Heavy Metals by Fe3O4/Talc Nanocomposite and Optimization Study Using Response Surface Methodology, Int J Mol Sci. 15 (2014) 12913-12927.

DOI: 10.3390/ijms150712913

Google Scholar

[6] X. Wang, Y. Liao, D. Zhang, et al., A review of Fe3O4 thin films: Synthesis, modification and applications, J Mater Sci Technol. 34 (2018) 1259-1272.

Google Scholar

[7] A. Radon, A. Drygala, L. Hawelek, et al., Structure and optical properties of Fe3O4 nanoparticles synthesized by co precipitation method with different organic modifiers, Mater Charact. 131 (2017) 148-156.

DOI: 10.1016/j.matchar.2017.06.034

Google Scholar

[8] H. Zhan, Y. Bian, Q. Yuan, et al., Preparation and Potential Applications of Super Paramagnetic Nano-Fe3O4, Processes. 6 (2018).

DOI: 10.3390/pr6040033

Google Scholar

[9] V. Kusigerski, E. Illes, J. Blanusa, et al., Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method, J Magn Magn Mater. 475 (2019) 470-478.

DOI: 10.1016/j.jmmm.2018.11.127

Google Scholar

[10] K.N. Koo, A.F. Ismail, M.H.D. Othman, et al., Preparation and characterization of superparamagnetic magnetite (Fe3O4) nanoparticles: A short review, Malays J Fund Appl Sci. 15 (2019) 23-31.

DOI: 10.11113/mjfas.v15n2019.1224

Google Scholar

[11] T. Guo, X. Bian, C. Yang, A new method to prepare water based Fe3O4 ferrofluid with high stabilization, Physica A. 438 (2015) 560-567.

DOI: 10.1016/j.physa.2015.06.035

Google Scholar

[12] L. Xu, J.H. Peng, C. Srinivasakannan, et al., Synthesis of copper nanocolloids using a continuous flow based microreactor, Appl. Surf. Sci., 355 (2015) 1-6.

DOI: 10.1016/j.apsusc.2015.07.070

Google Scholar

[13] K.-J. Wu, G.M.D.V. Bohan, L. Torrente-Murciano, Synthesis of narrow sized silver nanoparticles in the absence of capping ligands in helical microreactors, React Chem Eng. 2 (2017) 116-128.

DOI: 10.1039/c6re00202a

Google Scholar

[14] A.A. Kulkarni, V.S. Cabeza, Insights in the Diffusion Controlled Interfacial Flow Synthesis of Au Nanostructures in a Microfluidic System, Langmuir. 33 (2017) 14315-14324.

DOI: 10.1021/acs.langmuir.7b03277

Google Scholar

[15] B.G. Zukas, N.R. Gupta, Interphase Synthesis of Zinc Oxide Nanoparticles in a Droplet Flow Reactor, Ind Eng Chem Res. 56 (2017) 7184-7191.

DOI: 10.1021/acs.iecr.7b00407

Google Scholar

[16] L. Uson, M. Arruebo, V. Sebastian, et al., Single phase microreactor for the continuous, high-temperature synthesis of < 4 nm superparamagnetic iron oxide nanoparticles, J Chem Eng. 340 (2018) 66-72.

DOI: 10.1016/j.cej.2017.12.024

Google Scholar

[17] L. Uson, V. Sebastian, M. Arruebo, et al., Continuous microfluidic synthesis and functionalization of gold nanorods, J Chem Eng. 285 (2016) 286-292.

DOI: 10.1016/j.cej.2015.09.103

Google Scholar

[18] M.I. Khalil, Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors, Arab J Chem. 8 (2015) 279-284.

DOI: 10.1016/j.arabjc.2015.02.008

Google Scholar

[19] C. Vasilescu, M. Latikka, K.D. Knudsen, et al., High concentration aqueous magnetic fluids: structure, colloidal stability, magnetic and flow properties, Soft Matter. 14 (2018) 6648-6666.

DOI: 10.1039/c7sm02417g

Google Scholar