Study of Dielectric Characteristics and Energy Storage Properties of Sr0.7Bi0.2TiO3 Doped with CaTiO3

Article Preview

Abstract:

Sr0.7Bi0.2TiO3 (SBT), a kind of lead-free relaxor ferroelectric, is attracting more and more attention for pulse energy storage applications due to the low remnant polarization and high energy storage efficiency (h). However, relatively low dielectric breakdown strength (DBS) limited the recoverable energy storage density (Wrec). Herein, CaTiO3 with high intrinsic DBS was introduced in SBT. The novel solid solutions (1-x)SBT-xCT with x = 0 - 0.15 shows pure pseudo-cubic perovskite structure. When x = 0.05, the maxium polarization are improved, and the CT doping decreases the average grain size, leading to an enhanced DBS. A high energy storage properties of 1.59 J/cm3 with the h of 87.4% at 220 kV/cm is achieved in 0.95SBT-0.05CT, which demonstrates that this 0.95SBT-0.05CT is prospective materials for energy storage application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-173

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang, S. Lan, Y. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S. Zhang, L. Chen, Y. Lin, C. Nan, Science 365 (2019) 578-582.

DOI: 10.1126/science.aaw8109

Google Scholar

[2] J. Li, F. Li, Z. Xu, S. Zhang, Adv. Mater. 30 (2018) 1802155.

Google Scholar

[3] D. Wang, Z. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tanb, I.M. Reaney, J. Mater. Chem. A 6 (2018) 4133-4144.

DOI: 10.1039/c7ta09857j

Google Scholar

[4] T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, J. Mater. Chem. A 5 (2017) 554-563.

Google Scholar

[5] F. Li, T. Jiang, J. Zhai, B. Shen, H. Zeng, J. Mater. Chem. C 6 (2018) 7976-7981.

Google Scholar

[6] M. Sakurai, K. Kanehara, H. Takeda, T. Tsurumi, T. Hoshina, J. Ceram. Soc. Jpn. 124 (2016) 664-667.

Google Scholar

[7] G. Zhang, M. Cao, H. Hao, H. Liu, Ferroelectrics 447 (2013) 86-94.

Google Scholar

[8] M. Chao, J. Liu, M. Zeng, D. Wang, H. Yu, Y. Yuan, S. Zhang, Appl. Phys. Lett. 112 (2018) 203903.

Google Scholar

[9] H. Zhou, X. Liu, X. Zhu, X. Chen, J. Am. Ceram. Soc. 101 (2018) 1999-2008.

Google Scholar

[10] G. Zhang, H. Liu, Z. Yao, M. Cao, H. Hao, J. Mater. Sci-Mater. El. 26 (2015) 2726-2732.

Google Scholar

[11] F. Li, X. Hou, J. Wang, H. Zeng, B. Shen, J. Zhai, J. Eur. Ceram. Soc. 39 (2019) 2889-2898.

Google Scholar

[12] R. Shannon, Acta Cryst. A32 (1976) 751-767.

Google Scholar

[13] Q. Yuan, G. Li, F. Yao, S. Cheng, Y. Wang, R. Ma, S. Mi, M. Gu, K. Wang, J. Li, H. Wang, Nano Energy 52 (2018) 203-210.

DOI: 10.1016/j.nanoen.2018.07.055

Google Scholar

[14] M. Zhou, R. Liang, Z. Zhou, X. Dong, J. Mater. Chem. C 6 (2018) 8528-8537.

Google Scholar

[15] Z. Shen, X. Wang, B. Luo, L. Li, J. Mater. Chem. A 3 (2015) 18146-18153.

Google Scholar

[16] X. Liu, Y. Zhao, J. Shi, H. Du, X. Xu, H. Lu, J. Che, X. Li, J. Alloy. Compd. 799 (2019) 231-238.

Google Scholar

[17] T. Tunkasiri, G. Rujijanagul, J. Mater. Sci. Lett. 15 (1996) 1767-1769.

Google Scholar