Improvement of Dielectric Breakdown Strength in (1-x)Sr0.7Ba0.3Nb2O6-xSr0.7Bi0.2TiO3 Ceramics

Article Preview

Abstract:

In this work, a series of (1-x)Sr0.7Ba0.3Nb2O6-xSr0.7Bi0.2TiO3 ceramics were formulated by a phase-mixed sintering, the microstructure and energy storage performance were studied. The introduction of SBT induces the formation of equiaxed crystals leading to the denser microstructure, thus improving the dielectric breakdown strength. In addition, the enhancement of relaxor behavior improves the energy storage performance. For 0.94Sr0.7Ba0.3Nb2O6-0.06Sr0.7Bi0.2TiO3, an energy storage density of 0.49J/cm3 and an efficiency of 94.2% were achieved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-159

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kousksou T, Bruel P, Jamil A, El Rhafiki T, Zeraouli Y 2014 Solar Energy Materials and Solar Cells. 120 59.

DOI: 10.1016/j.solmat.2013.08.015

Google Scholar

[2] Sebastian M T, Jantunen H 2008 Int Mater Rev. 53 57.

Google Scholar

[3] Filho R C, Ginani M F, Martins R A, Mendonça L M, Araújo J H, D'assunção A G 2010 Microwave & Optical Technology Letters. 52 1034.

Google Scholar

[4] Sarjeant W, Clelland I W, Price R A 2001 Proc IEEE. 89 846.

Google Scholar

[5] Gaudet J A, Barker R J, Buchenauer C J, Christodoulou C, Dickens J, Gundersen M A, Joshi R P, Krompholz H G, Kolb J F, Kuthi A 2004 Proc IEEE. 92 1144.

DOI: 10.1109/jproc.2004.829006

Google Scholar

[6] Li Q, Yao Z, Ning L, Gao S, Hu B, Dong G, Fan H 2018 Ceram Int. 44 2782.

Google Scholar

[7] Chao M, Liu J, Zeng M, Wang D, Yu H, Yuan Y, Zhang S 2018 Applied Physics Letters. 112 203903.

Google Scholar

[8] Yuan Q, Li G, Yao F-Z, Cheng S-D, Wang Y, Ma R, Mi S-B, Gu M, Wang K, Li J-F, Wang H 2018 Nano Energy. 52 203.

Google Scholar

[9] Li F, Zhai J W, Shen B, Liu X, Zeng H R 2018 Mater Res Lett. 6 345.

Google Scholar

[10] Ma J P, Chen X M, Ouyang W Q, Wang J, Li H, Fang J L 2018 Ceram Int. 44 4436.

Google Scholar

[11] Mendes R G, Eiras J A 2004 J Eur Ceram Soc. 24 1637.

Google Scholar

[12] Kulkarni A R, Patro P K 2015 T Indian Ceram Soc. 69 135.

Google Scholar

[13] David C, Granzow T, Tunyagi A, WöHlecke M, Woike T, Betzler K, Ulex M, Imlau M, Pankrath R 2004 physica status solidi (a). 201 R49.

DOI: 10.1002/pssa.200409044

Google Scholar

[14] Rao Y, Liu H, Hao H, Yao Z, Zhou X, Cao M, Yu Z 2018 Ceram Int. 44 11022.

Google Scholar

[15] Wei L, Yang Z, Han X, Li Z 2012 J Mater Res. 27 979.

Google Scholar

[16] Wang C, Yan F, Yang H, Lin Y, Wang T 2018 J Alloys Compd. 749 605.

Google Scholar

[17] Huang J, Zhang Y, Ma T, Li H, Zhang L 2010 Applied Physics Letters. 96 042902.

Google Scholar

[18] Young A, Hilmas G, Zhang S C, Schwartz R W 2007 J Am Ceram Soc. 90 1504.

Google Scholar

[19] Jiang X, Hao H, Zhang S, Lv J, Cao M, Yao Z, Liu H 2019 J Eur Ceram Soc. 39 1103.

Google Scholar

[20] Yang Z, Gao F, Du H, Jin L, Yan L, Hu Q, Yu Y, Qu S, Wei X, Xu Z, Wang Y-J 2019 Nano Energy. 58 768.

Google Scholar

[21] Cao L, Yuan Y, Li E, Zhang S 2019 Ceram Int. 45 5660.

Google Scholar

[22] Fan J, Yang B, Wei L, Wang Z 2016 Ceram Int. 42 4054.

Google Scholar

[23] Luo B C, Wang X H, Tian E, Qu H M, Zhao Q C, Cai Z M, Wang H X, Feng W, Li B W, Li L T 2018 J Am Ceram Soc. 101 2976.

Google Scholar