[1]
Yoshika, R. 23 Nuclear energy based on thorium molten salt. In Molten Salts Chemistry, 1st ed.; Frédéric, L., Henri, G.; Elsevier: Amsterdam, Netherlands, 2013; pp.471-496.
DOI: 10.1016/b978-0-12-398538-5.00023-8
Google Scholar
[2]
Serp, J.; Allibert, M.; Beneš, O.; Delpech, S.; Feynberg, O. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog. Nucl. Energ 2014, 77, 308-319.
DOI: 10.1016/j.pnucene.2014.02.014
Google Scholar
[3]
Wanderka, N.; Bakai, A.; Abromeit, C.; Isheim, D.; Seidman, D.N. Effects of 10MeV electron irradiation at high temperature of a Ni-Mo based Hastelloy. Ultramicroscopy 2007, 107, 786-790.
DOI: 10.1016/j.ultramic.2007.02.029
Google Scholar
[4]
Jia, Y.Y.; Cheng, H.W.; Qiu, J.; Han, F.F.; Zou, Y.; Li, Z.J.; Zhou, X.T.; Xu, H.J. Effect of temperature on diffusion behavior of Te into nickel. J. Nucl. Mater 2013, 441, 372-379.
DOI: 10.1016/j.jnucmat.2013.06.025
Google Scholar
[5]
Yvon, P.; Carré, F. Structural materials challenges for advanced reactor systems. J. Nucl. Mater 2009, 385, 217-222.
DOI: 10.1016/j.jnucmat.2008.11.026
Google Scholar
[6]
Cheng, H.W.; Leng, B.; Chen, K.; Jia, Y.Y.; Dong, J.S.; Li, Z.J.; Zhou, X.T. EPMA and TEM characterization of intergranular tellurium corrosion of Ni-16Mo-7Cr-4Fe superalloy. Corros. Sci 2015, 97, 1-6.
DOI: 10.1016/j.corsci.2015.04.017
Google Scholar
[7]
Yang, J.G.; He, Y.M.; Qin, C.J.; Zhao, W.J.; Chen, S.J.; Gao, Z.L. Microstructure evolution in a Ni-Mo-Cr superalloy subjected to simulated heat-affected zone thermal cycle with high peak temperature. Mater. Design 2015, 86, 230-236.
DOI: 10.1016/j.matdes.2015.07.085
Google Scholar
[8]
Jiang, L.; Shrestha, S.L.; Long, Y.; Li, Z.J.; Zhou, X. T.. The formation of eutectic phases and hot cracks in one Ni-Mo-Cr superalloy. Mater. Design 2016, 93, 324-333.
DOI: 10.1016/j.matdes.2015.12.152
Google Scholar
[9]
Johnston, W.G.; Rosolowski, J.H.; Turkalo, A.M.; Lauritzen, T. An experimental survey of swelling in commercial Fe-Cr-Ni alloys bombarded with 5 MeV Ni Ions. J. Nucl. Mater 1974, 54, 24-40.
DOI: 10.1016/0022-3115(74)90073-7
Google Scholar
[10]
Boothby, R.M. Radiation Effects in Nickel-Based Alloys. In Comprehensive Nuclear Materials, 1st ed.; Rudy, J.M.K.; Elsevier Science: Amsterdam, Netherlands, 2012; Volume 4, pp.123-150.
DOI: 10.1016/b978-0-08-056033-5.00090-2
Google Scholar
[11]
Rowcliffe, A.F.; Mansur, L.K.; Hoelzer, D.T.; Nanstad, R.K. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors. J. Nucl. Mater 2009, 392, 341-352.
DOI: 10.1016/j.jnucmat.2009.03.023
Google Scholar
[12]
Fyfitch, S. Corrosion and Stress Corrosion Cracking of Ni-Base Alloys. In Comprehensive Nuclear Materials, 1st ed.; Rudy, J.M.K.; Elsevier Science: Amsterdam, Netherlands, 2012; Volume 5, pp.69-92.
DOI: 10.1016/b978-0-08-056033-5.00079-3
Google Scholar
[13]
He, Y.M.; Yang, J.G.; Chen, S.J.; Li, Z.; Gao, Z.L. Effect of high-temperature aging on microstructure and mechanical properties of Ni-Mo-Cr based superalloy subjected to simulated heat-affected zone thermal cycle. J. Alloy. Compd 2016, 660, 266-275.
DOI: 10.1016/j.jallcom.2015.11.129
Google Scholar
[14]
Bhattacharyya, D.; Davis, J.; Drew, M.; Harrison, R.P.; Edward, L. Characterization of complex carbide-silicide precipitates in a Ni-Cr-Mo-Fe-Si alloy modified by welding. Mate. Charact 2015, 105, 118-128.
DOI: 10.1016/j.matchar.2015.05.001
Google Scholar
[15]
Xu, Z.F.; Jiang, L.; Dong, J.S.; Li, Z.J.; Zhou, X.T. The effect of silicon on precipitation and decomposition behaviors of M6C carbide in a Ni-Mo-Cr superalloy. J. Alloy. Compd 2015, 620, 197-203.
DOI: 10.1016/j.jallcom.2014.09.112
Google Scholar
[16]
Gehlbach, R.E.; Mccoy, J.H.E. Phase Instability in Hastelloy N. International Symposium on Structural Stability in Superalloys 1968, 346-366.
DOI: 10.7449/1968/superalloys_1968_346_366
Google Scholar
[17]
Zhang, J.; Hu, R.; Wang, J.; Li, J. Secondary M6C Precipitation in Ni-20Cr-18W-1Mo Superalloy. Inter. J. Innovative. Tech. Explor. Eng 2013, 3, 48-51.
Google Scholar
[18]
Ignatiev, V.; Surenkov, A. Material Performance in Molten Salts. In Comprehensive Nuclear Materials, 1st ed.; Rudy, J.M.K.; Elsevier Science: Amsterdam, Netherlands, 2012; Volume 5, pp.221-250.
DOI: 10.1016/b978-0-08-056033-5.00098-7
Google Scholar
[19]
Ignatiev, V.; Surenkov, A.; Gnidoy, I.; Kulakov, A.; Uglov, V.; Vasiliev, A.; Presniakov, V.M. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture. J. Nucl. Mater 2013, 440, 243-249.
DOI: 10.1016/j.jnucmat.2013.05.001
Google Scholar
[20]
Musazadeh, M.H.; Dehghani, K. Molecular dynamic simulation of crack propagation in nanocrystalline Ni containing different shapes and types of second phases. Comp. Mater. Sci 2011, 50, 3075-3079.
DOI: 10.1016/j.commatsci.2011.04.032
Google Scholar
[21]
Carreño, F., Chao, J., Pozuelo, M., Ruano, O. A.. Microstructure and fracture properties of an ultrahigh carbon steel-mild steel laminated composite. Scrip Mat 2003, 48, 1135-1140.
DOI: 10.1016/s1359-6462(02)00602-4
Google Scholar
[22]
Alinger, M.J., Odette, G.R., Lucas, G. E.. Tensile and fracture toughness properties of MA957: implications to the development of nanocomposited ferritic alloys. J. Nucl Mat 2002, 307-311, 484-489.
DOI: 10.1016/s0022-3115(02)01220-5
Google Scholar