Effects of Second Phases on Charpy Impact Energy and Crack Propagation Behavior of Hastelloy N Sheet Using for Molten Salt Reactor

Article Preview

Abstract:

In order to obtain the effect of second phases on Charpy impact energy and crack propagation behavior of Hastelloy N sheet, Charpy notched impact toughness test have been accomplished with different directions (RD, ND) of V-notch after solution treatment. The fracture morphology and microstructure are observed by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). It is shown that the dominant second phases in Hastelloy N after solution treatment includes molybdenum-riched Ni-Mo phase, which dissolve some elements such as chromium, silicon and ferrum, and a few carbides. The Charpy impact energy of sample 2# (RD) is 225J, almost twice as much as sample 1# (ND). Based on the reconstruction of morphology and distribution of second phases, the mechanism for effect of second phases on crack propagation behavior is discussed. The islands of second phase particles modify the stress triaxiality state, resulting in the propagation path of crack in 2# is totally different from that in 1#.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-142

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yoshika, R. 23 Nuclear energy based on thorium molten salt. In Molten Salts Chemistry, 1st ed.; Frédéric, L., Henri, G.; Elsevier: Amsterdam, Netherlands, 2013; pp.471-496.

DOI: 10.1016/b978-0-12-398538-5.00023-8

Google Scholar

[2] Serp, J.; Allibert, M.; Beneš, O.; Delpech, S.; Feynberg, O. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog. Nucl. Energ 2014, 77, 308-319.

DOI: 10.1016/j.pnucene.2014.02.014

Google Scholar

[3] Wanderka, N.; Bakai, A.; Abromeit, C.; Isheim, D.; Seidman, D.N. Effects of 10MeV electron irradiation at high temperature of a Ni-Mo based Hastelloy. Ultramicroscopy 2007, 107, 786-790.

DOI: 10.1016/j.ultramic.2007.02.029

Google Scholar

[4] Jia, Y.Y.; Cheng, H.W.; Qiu, J.; Han, F.F.; Zou, Y.; Li, Z.J.; Zhou, X.T.; Xu, H.J. Effect of temperature on diffusion behavior of Te into nickel. J. Nucl. Mater 2013, 441, 372-379.

DOI: 10.1016/j.jnucmat.2013.06.025

Google Scholar

[5] Yvon, P.; Carré, F. Structural materials challenges for advanced reactor systems. J. Nucl. Mater 2009, 385, 217-222.

DOI: 10.1016/j.jnucmat.2008.11.026

Google Scholar

[6] Cheng, H.W.; Leng, B.; Chen, K.; Jia, Y.Y.; Dong, J.S.; Li, Z.J.; Zhou, X.T. EPMA and TEM characterization of intergranular tellurium corrosion of Ni-16Mo-7Cr-4Fe superalloy. Corros. Sci 2015, 97, 1-6.

DOI: 10.1016/j.corsci.2015.04.017

Google Scholar

[7] Yang, J.G.; He, Y.M.; Qin, C.J.; Zhao, W.J.; Chen, S.J.; Gao, Z.L. Microstructure evolution in a Ni-Mo-Cr superalloy subjected to simulated heat-affected zone thermal cycle with high peak temperature. Mater. Design 2015, 86, 230-236.

DOI: 10.1016/j.matdes.2015.07.085

Google Scholar

[8] Jiang, L.; Shrestha, S.L.; Long, Y.; Li, Z.J.; Zhou, X. T.. The formation of eutectic phases and hot cracks in one Ni-Mo-Cr superalloy. Mater. Design 2016, 93, 324-333.

DOI: 10.1016/j.matdes.2015.12.152

Google Scholar

[9] Johnston, W.G.; Rosolowski, J.H.; Turkalo, A.M.; Lauritzen, T. An experimental survey of swelling in commercial Fe-Cr-Ni alloys bombarded with 5 MeV Ni Ions. J. Nucl. Mater 1974, 54, 24-40.

DOI: 10.1016/0022-3115(74)90073-7

Google Scholar

[10] Boothby, R.M. Radiation Effects in Nickel-Based Alloys. In Comprehensive Nuclear Materials, 1st ed.; Rudy, J.M.K.; Elsevier Science: Amsterdam, Netherlands, 2012; Volume 4, pp.123-150.

DOI: 10.1016/b978-0-08-056033-5.00090-2

Google Scholar

[11] Rowcliffe, A.F.; Mansur, L.K.; Hoelzer, D.T.; Nanstad, R.K. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors. J. Nucl. Mater 2009, 392, 341-352.

DOI: 10.1016/j.jnucmat.2009.03.023

Google Scholar

[12] Fyfitch, S. Corrosion and Stress Corrosion Cracking of Ni-Base Alloys. In Comprehensive Nuclear Materials, 1st ed.; Rudy, J.M.K.; Elsevier Science: Amsterdam, Netherlands, 2012; Volume 5, pp.69-92.

DOI: 10.1016/b978-0-08-056033-5.00079-3

Google Scholar

[13] He, Y.M.; Yang, J.G.; Chen, S.J.; Li, Z.; Gao, Z.L. Effect of high-temperature aging on microstructure and mechanical properties of Ni-Mo-Cr based superalloy subjected to simulated heat-affected zone thermal cycle. J. Alloy. Compd 2016, 660, 266-275.

DOI: 10.1016/j.jallcom.2015.11.129

Google Scholar

[14] Bhattacharyya, D.; Davis, J.; Drew, M.; Harrison, R.P.; Edward, L. Characterization of complex carbide-silicide precipitates in a Ni-Cr-Mo-Fe-Si alloy modified by welding. Mate. Charact 2015, 105, 118-128.

DOI: 10.1016/j.matchar.2015.05.001

Google Scholar

[15] Xu, Z.F.; Jiang, L.; Dong, J.S.; Li, Z.J.; Zhou, X.T. The effect of silicon on precipitation and decomposition behaviors of M6C carbide in a Ni-Mo-Cr superalloy. J. Alloy. Compd 2015, 620, 197-203.

DOI: 10.1016/j.jallcom.2014.09.112

Google Scholar

[16] Gehlbach, R.E.; Mccoy, J.H.E. Phase Instability in Hastelloy N. International Symposium on Structural Stability in Superalloys 1968, 346-366.

DOI: 10.7449/1968/superalloys_1968_346_366

Google Scholar

[17] Zhang, J.; Hu, R.; Wang, J.; Li, J. Secondary M6C Precipitation in Ni-20Cr-18W-1Mo Superalloy. Inter. J. Innovative. Tech. Explor. Eng 2013, 3, 48-51.

Google Scholar

[18] Ignatiev, V.; Surenkov, A. Material Performance in Molten Salts. In Comprehensive Nuclear Materials, 1st ed.; Rudy, J.M.K.; Elsevier Science: Amsterdam, Netherlands, 2012; Volume 5, pp.221-250.

DOI: 10.1016/b978-0-08-056033-5.00098-7

Google Scholar

[19] Ignatiev, V.; Surenkov, A.; Gnidoy, I.; Kulakov, A.; Uglov, V.; Vasiliev, A.; Presniakov, V.M. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture. J. Nucl. Mater 2013, 440, 243-249.

DOI: 10.1016/j.jnucmat.2013.05.001

Google Scholar

[20] Musazadeh, M.H.; Dehghani, K. Molecular dynamic simulation of crack propagation in nanocrystalline Ni containing different shapes and types of second phases. Comp. Mater. Sci 2011, 50, 3075-3079.

DOI: 10.1016/j.commatsci.2011.04.032

Google Scholar

[21] Carreño, F., Chao, J., Pozuelo, M., Ruano, O. A.. Microstructure and fracture properties of an ultrahigh carbon steel-mild steel laminated composite. Scrip Mat 2003, 48, 1135-1140.

DOI: 10.1016/s1359-6462(02)00602-4

Google Scholar

[22] Alinger, M.J., Odette, G.R., Lucas, G. E.. Tensile and fracture toughness properties of MA957: implications to the development of nanocomposited ferritic alloys. J. Nucl Mat 2002, 307-311, 484-489.

DOI: 10.1016/s0022-3115(02)01220-5

Google Scholar