Preparation of TiO2 Thin Films by Sol-Gel Method and Analysis of its Transmittance Based on Computer Image Processing

Article Preview

Abstract:

TiO2 films were prepared by sol-gel method with butyl titanate, anhydrous ethanol, acetyl acetone and hydrochloric acid as raw materials, which were sintered at 380 °C and 530 °C respectively to obtain TiO2 films. XRD was used for analyzing the crystal structure of TiO2 film, and ImageJ software was used to detect the light transmittance of TiO2 film samples. The results show that the film sintered at 530 °C is brookite structure and the film sintered at 380 °C is anatase structure. The increase of sintering temperature is not conducive to the growth of TiO2 film grains. TiO2 films sintered at 380 °C have good light transmittance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-126

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Piscopo, D. Robert, C. Marzolin and J.V. Weber: Journal of Materials Science Letters Vol. 19(8) (2000), p.683.

Google Scholar

[2] Y. Zhang, Z. Tang, X. Fu and Y.J. Xu: ACS nano Vol. 4(12) (2010), p.7303.

Google Scholar

[3] X. Lin, H. Chen, Z. Hu, Y. Hou and W. Dai: Solid State Sciences, Vol. 83 (2018), p.181.

Google Scholar

[4] C.P. Athanasekou, V. Likodimos and P. Falaras: Journal of Environmental Chemical Engineering Vol. 6 (2018), p.7386.

Google Scholar

[5] M. Afsharnia,  M. Kianmehr, H. Biglari, A. Dargahi and A.Karimi: Water Science and Engineering Vol. 11(03) (2018), p.42.

Google Scholar

[6] W.H. Ching, M. Leung and D.Y.C. Leung: Solar Energy Vol. 77(2) (2004), p.129.

Google Scholar

[7] M. Cristina Yeber, J. Rodrı́guez, J. Freer, N. Durán and H.D. Mansilla: Chemosphere Vol. 41(8) (2000), p.1193.

DOI: 10.1016/s0045-6535(99)00551-2

Google Scholar

[8] S. Tuckute, S. Varnagiris, M. Urbonavicius, M. Lelis and S. Sakalauskaite: Applied Surface Science Vol. 489 (2019), p.576.

DOI: 10.1016/j.apsusc.2019.05.341

Google Scholar

[9] J. Tao, M. Hong, M. Zhang, X. Chen and Z. Sun: Journal of Materials Science: Materials in Electronics Vol. 27(2) (2015), p.2103.

Google Scholar

[10] M. Aparicio and L.C. Klein. Journal of Sol-Gel Science and Technology Vol. 29(2) (2004), p.81.

Google Scholar

[11] D.Negrea, C.Ducu, S. Moga, V. Malinovschi, C. J. Monty, B. Vasile, D. Dorobantu and M. Enachescu: Journal of Nanoscience & Nanotechnology Vol. 12(11) (2012), p.8746.

DOI: 10.1166/jnn.2012.6814

Google Scholar

[12] K.S. Lee, J.S. Hyun, H.O. Seo, Y.D. Kim and J.H. Boo: Journal of Nanoscience and Nanotechnology Vol. 10(5) (2010), p.3346.

Google Scholar

[13] M.O. Abou-Helal and W.T. Seeber: Applied Surface Science Vol. 195(1-4) (2002), p.53.

Google Scholar

[14] Š. Kment, I. Gregora, H. Kmentová, P. Novotná, Z. Hubička, J. Krýsa and M. Hrabovský: Journal of Sol-Gel Science and Technology Vol. 63(3) (2012), p.294.

DOI: 10.1007/s10971-012-2787-6

Google Scholar

[15] I. Tbessi, M. Benito, E. Molins, J. LIorca, A. Touati, S. Sayadi and W. Najjar: Solid State Science Vol. 88 (2019), p.20.

DOI: 10.1016/j.solidstatesciences.2018.12.004

Google Scholar

[16] S. Miszczak and B. Pietrzyk: Ceramics International Vol. 41(6) (2015), p.7461.

Google Scholar

[17] V. Amandine, M. Cédric, M. Sergio and D. Patricia: Micron Vol. 121 (2019), p.90.

Google Scholar